Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swarming Particles

07.04.2009
Silver chloride microparticles act as light-driven micromotors that organize into swarms

A swarm of tiny machines, speeding in concert through the bloodstream to repair an organ or deliver a drug to its target area, microrobots working together to construct a nanotechnological component—although it sounds like science fiction, it is a thoroughly realistic future scenario.

Amazing progress has already been made in the production of autonomous nano- and micromotors, but the little machines have continued to lack in team spirit. To complete challenging tasks, the individual machines must communicate and cooperate with each other.

Researchers led by Ayusman Sen at Pennsylvania State University (USA) have now introduced silver chloride microparticles that can “swarm” together, almost like living single-celled organisms. As reported in the journal Angewandte Chemie, irradiation with UV light causes the particles to give off “signal substances” that “attract” other particles.

Living cells and organisms are able to exchange information with each other to accomplish tasks as a team. Single-celled slime molds, for example, living in unfavorable conditions thus release a special substance. Neighboring slime molds follow the gradient of this signal substance and aggregate in the form of a multi-celled fruiting body. The silver chloride particles used by Sen’s team, which are about 1µm in size, behave in a similar fashion when irradiated with UV light. Silver chloride decomposes under UV light, releasing ions that act as both a propulsion mechanism and signal substance.

This phenomenon is based on diffusiophoresis, the movement of particles along an electrolyte gradient. The silver chloride particles “swim” toward a higher ion concentration. Because of irregularities in the surfaces of the particles and non-uniform irradiation, the degradation of the particles is asymmetric. Different quantities of ions are released in different places on the surface, which results in a local ion gradient around the particles. The particle thus produces its own ion gradient, which propels it at speeds up to 100 µm/s (self-diffusiophoresis). Neighboring sliver chloride particles follow the ion gradient of the solution and “swim” to regions of higher particle density. After several minutes, this results in small, stable “swarms” of particles. Photochemically inactive silicon dioxide particles also react to the ion signal, aggregating around the silver chloride particles.

This system can be used as a nonbiological model for communication between cells. Most importantly though, it represents a new design principle for “intelligent” synthetic nano- or micromachines that can work together as a team.

Author: Ayusman Sen, The Pennsylvania State University, University Park (USA), http://research.chem.psu.edu/axsgroup/dr_sen.html

Title: Schooling Behavior of Light-Powered Autonomous Micromotors in Water

Angewandte Chemie International Edition 2009, 48, No. 18, 3308–3312, doi: 10.1002/anie.200804704

Ayusman Sen | Angewandte Chemie
Further information:
http://research.chem.psu.edu/axsgroup/dr_sen.html
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>