Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Swarming Particles

Silver chloride microparticles act as light-driven micromotors that organize into swarms

A swarm of tiny machines, speeding in concert through the bloodstream to repair an organ or deliver a drug to its target area, microrobots working together to construct a nanotechnological component—although it sounds like science fiction, it is a thoroughly realistic future scenario.

Amazing progress has already been made in the production of autonomous nano- and micromotors, but the little machines have continued to lack in team spirit. To complete challenging tasks, the individual machines must communicate and cooperate with each other.

Researchers led by Ayusman Sen at Pennsylvania State University (USA) have now introduced silver chloride microparticles that can “swarm” together, almost like living single-celled organisms. As reported in the journal Angewandte Chemie, irradiation with UV light causes the particles to give off “signal substances” that “attract” other particles.

Living cells and organisms are able to exchange information with each other to accomplish tasks as a team. Single-celled slime molds, for example, living in unfavorable conditions thus release a special substance. Neighboring slime molds follow the gradient of this signal substance and aggregate in the form of a multi-celled fruiting body. The silver chloride particles used by Sen’s team, which are about 1µm in size, behave in a similar fashion when irradiated with UV light. Silver chloride decomposes under UV light, releasing ions that act as both a propulsion mechanism and signal substance.

This phenomenon is based on diffusiophoresis, the movement of particles along an electrolyte gradient. The silver chloride particles “swim” toward a higher ion concentration. Because of irregularities in the surfaces of the particles and non-uniform irradiation, the degradation of the particles is asymmetric. Different quantities of ions are released in different places on the surface, which results in a local ion gradient around the particles. The particle thus produces its own ion gradient, which propels it at speeds up to 100 µm/s (self-diffusiophoresis). Neighboring sliver chloride particles follow the ion gradient of the solution and “swim” to regions of higher particle density. After several minutes, this results in small, stable “swarms” of particles. Photochemically inactive silicon dioxide particles also react to the ion signal, aggregating around the silver chloride particles.

This system can be used as a nonbiological model for communication between cells. Most importantly though, it represents a new design principle for “intelligent” synthetic nano- or micromachines that can work together as a team.

Author: Ayusman Sen, The Pennsylvania State University, University Park (USA),

Title: Schooling Behavior of Light-Powered Autonomous Micromotors in Water

Angewandte Chemie International Edition 2009, 48, No. 18, 3308–3312, doi: 10.1002/anie.200804704

Ayusman Sen | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>