Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-Stretchy Electronics

25.11.2013
A mobile telephone display for your jacket sleeve, ECG probes for your workout clothes—wearable electronics are in demand.

In order for textiles with built-in electronics to function over longer periods of time, all of the components need to be flexible and stretchable. In the journal Angewandte Chemie, Chinese researchers have now introduced a new type of supercapacitor that fulfills this requirement. Its components are fiber-shaped and based on carbon nanotubes.

For electronic devices to be incorporated into textiles or plastic films, their components must be stretchable. This is true for LEDS, solar cells, transistors, circuits, and batteries—as well as for the supercapacitors often used for static random access memory (SRAM).

SRAM is often used as a cache in processors or for local storage on chips, as well as in devices that must maintain their data over several years with no source of power.

Previous stretchable electronic components have generally been produced in a conventional planar format, which has been an obstacle to their further development for use in small, lightweight, wearable electronics. Initial attempts to produce supercapacitors in the form of wires or fibers produced flexible—but not stretchable—components. However, stretchability is a required feature for a number of applications. For example, electronic textiles would easily tear if they were not stretchable.

A team led by Huisheng Peng at Fudan University has now developed a new family of highly stretchable, fiber-shaped, high-performance supercapacitors. The devices are made by a winding process with an elastic fiber at the core. The fiber is coated with an electrolyte gel and a thin layer of carbon nanotubes is wound around it like a sheet of paper. This is followed by a second layer of electrolyte gel, another layer of carbon nanotube wrap, and a final layer of electrolyte gel.

The delicate “sheets” of carbon nanotubes are produced by chemical vapor deposition and a spinning process. In the sheets this method produces, the tiny tubes are aligned in parallel. These types of layers display a remarkable combination of properties: They are highly flexible, tear-resistant, conductive, and thermally and mechanically stable.

In the wound fibers, the two layers of carbon nanotubes act as electrodes. The electrolyte gel separates the electrodes from each other while stabilizing the nanotubes during stretching so that their alignment is maintained. This results in supercapacitor fibers with a high capacity that is maintained after many stretching cycles.

About the Author
Dr. Huisheng Peng is professor in the Department of Macromolecular Science and Laboratory of Advanced Materials at Fudan University. His research centers on functional composite materials and their energy applications. Peng and his co-workers have created aligned carbon nanotube/polymer composites and developed novel wire-shaped solar cells, Li-ion batteries and supercapacitors.

Author: Huisheng Peng, Fudan University, Shanghai (China), http://www.polymer.fudan.edu.cn/polymer/research/Penghs/member_en.htm

Title: A Highly Stretchable, Fiber-Shaped Supercapacitor
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201307619

Huisheng Peng | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.
http://www.polymer.fudan.edu.cn/polymer/research/Penghs/member_en.htm

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>