Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After the next sunset, please turn right

30.03.2010
Bats navigate with the help of the sun

Despite the fact that bats are active after sunset, they rely on the sun as their most trusted source of navigation. Researchers from the Max Planck Institute for Ornithology found that the greater mouse-eared bat orients itself with the help of the earth's magnetic field at night and calibrates this compass to the sun's position at sunset (published online in Proceedings of the National Academy of Science, PNAS, March 29th, 2010)


Greater Mouse-Eared Bat (Myotis myotis)
Image: Stefan Greif


Greater Mouse-Eared Bat (Myotis myotis)
Image: Dietmar Nill

Since the 1940s it has been known that bats use echolocation calls for orientation at close range. Some bats, however, fly 20 km and more away from their roost every night to search for prey. Summer and winter roosts are often over 50 km apart and some species migrate even up to 1000 km each year across Europe. Recent evidence has shown that bats utilise the Earth's magnetic field for orientation on longer journeys. Scientists of the Max Planck Institute for Ornithology have now confirmed this finding after conducting research on the ability of greater mouse-eared bats to find their way home at night after manipulations of the magnetic field at sunset.

First, Richard Holland, Ivailo Borissov and Björn Siemers wanted to discover if bats are able to orient themselves at an unknown location. To do so, they captured bats and released them 25 km from their roost cave. They followed their flights with the help of small radio transmitters. Already at 1-3 km distance, most bats were heading home in the direction of their cave. "I was quite sceptical that this first part of the experiment would work," says Björn Siemers. "Therefore I was very impressed that the fastest bats arrived back in their cave only two hours after release". The precise question the researchers wanted to answer was: is this ability for orientation in unknown territory somehow related to perception of the magnetic field? And, further to this, do the bats then calibrate their magnetic compass to the sun like migrating birds?

The three researchers altered the direction of the magnetic field from north to east for half of the bats during sunset with the help of a device called a Helmholtz coil. And in contrast to the control group, these bats flew about 90 degrees east instead of south to their home cave. The decisive last part of the experiment was to repeat the procedure at night. Again the magnetic field of half of the bats was turned from north to east, but only after all signs of sunset had vanished from the sky. In this case the bats with an altered magnetic field flew in the same direction as the control bats. "The manipulation of the magnetic field was only effective in combination with the sunset", says Richard Holland. "Greater mouse-eared bats used the position of the sun at sunset as the most reliable indication of direction, and calibrated the magnetic field with it to use it as a compass later that night". For the bats, sunset means west, regardless to what their actual magnetic field is telling them. Due to iron deposits in the local earths crust, the magnetic field is known to vary unpredictably. It seems therefore that the animals find the sun to be a more trustworthy source for direction. This result is remarkable, given that this species usually emerges from their caves after sunset. "After the bats became active, we were able to see where the sun had disappeared even an hour after sunset", says Björn Siemers. This 'glow' seemed to be sufficient for the bats orientation. [SP]

Original work:
Richard Holland, Ivailo Borissov and Björn Siemers
A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun

Proceedings of the National Academy of Sciences (PNAS). Published online March 29th, 2010

Contact:
Dr. Richard Holland
Max Planck Institute for Ornithology, Radolfzell
Phone: +49 (0) 7732 1501 - 23
E-mail: rholland@orn.mpg.de
Dr. Björn Siemers
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 (0) 8157 932 - 348
E-mail: siemers@orn.mpg.de

Dr. Sabine Spehn | Max-Planck-Institut
Further information:
http://www.orn.mpg.de

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>