Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sundews just want to be loved

Why do some insect-eating plants like sundews keep their flowers so far away from their traps? New research suggests that it isn't a clever trick to keep pollinators safe, it's about getting pollinated

Sex can be complicated at the best of times, but plants have an extra difficulty. If you're a plant who relies on insects to pollinate your flowers and reproduce, you will want your flowerstalks to be long. That way your flowers are on display to insects above the crowd. But if your stalk is too long, you'll stand out to herbivores, and you flower will end up as someone's lunch.

It used to be thought that carnivorous plants like Sundews had the opposite problem. They reproduce better if they avoid eating insects that pollinate them, so a long stalk prevents an unfortunate meal. Simply looking at a plant, it's impossible to tell if the stalks evolved for sex or safety, but Bruce Anderson at the University of Stellenbosch has now found an answer to be published in the October issue of the Annals of Botany.

He examined two Sundews, Drosera cistiflora, which has a long stalk above its rosette of traps and Drosera pauciflora, which is more upright and has a shorter flower stalk. Both plants attract the same pollinators, so Anderson reasoned if a longer stalk is safer, D. pauciflora should accidentally catch more pollinators in its traps. To test his idea he observed the pollination of 500 plants of each species. Then he examined a sample of the traps to see what they had caught. Anderson said: "The pollinators all tended to be quite large, over 5mm. Most of them were monkey beetles. But the traps had a different catch. It's harder to say what many of them were exactly, because the Sundews left their bodies in poor condition, but they were small. Most were less than 2mm long. Only one plant had caught a pollinator. Statistically the length of the flower stems made no difference to the safety of the pollinators."

"But just because the stems didn't affect safety, it doesn't automatically follow that the other explanation, attracting pollinators, must be right by default. So I tested that too."

Flowers were cut from D. pauciflora and placed in test tubes. Some were set so the flowers were at normal height, while the other test tubes were buried so that the flower was barely above ground level. Anserson said: "Doing this meant there were few variables in the experiment. The flowers were identical. The only difference was their height. This way it's possible to simulate how well a Sundew that hadn't evolved a long stem could attract insects."

The results were emphatic. The taller flowers had ten times the number of visitors than the short flowers.

Anderson said: "There have been a few people who've suggested that the flower stalks are for attracting pollinators. However, the standard explanation in most textbooks is that the stems are to protect pollinators. It's a good story. It sounds like the kind of elegant solution that evolution comes up with. Now we have the hard data from these experiments and it shows that explanation is wrong. It's not about food, it's about sex. Sundews want to improve their chances of pollination and maximise their reproductive success."

Dr. David Frost | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>