Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sundews just want to be loved

18.08.2010
Why do some insect-eating plants like sundews keep their flowers so far away from their traps? New research suggests that it isn't a clever trick to keep pollinators safe, it's about getting pollinated

Sex can be complicated at the best of times, but plants have an extra difficulty. If you're a plant who relies on insects to pollinate your flowers and reproduce, you will want your flowerstalks to be long. That way your flowers are on display to insects above the crowd. But if your stalk is too long, you'll stand out to herbivores, and you flower will end up as someone's lunch.

It used to be thought that carnivorous plants like Sundews had the opposite problem. They reproduce better if they avoid eating insects that pollinate them, so a long stalk prevents an unfortunate meal. Simply looking at a plant, it's impossible to tell if the stalks evolved for sex or safety, but Bruce Anderson at the University of Stellenbosch has now found an answer to be published in the October issue of the Annals of Botany.

He examined two Sundews, Drosera cistiflora, which has a long stalk above its rosette of traps and Drosera pauciflora, which is more upright and has a shorter flower stalk. Both plants attract the same pollinators, so Anderson reasoned if a longer stalk is safer, D. pauciflora should accidentally catch more pollinators in its traps. To test his idea he observed the pollination of 500 plants of each species. Then he examined a sample of the traps to see what they had caught. Anderson said: "The pollinators all tended to be quite large, over 5mm. Most of them were monkey beetles. But the traps had a different catch. It's harder to say what many of them were exactly, because the Sundews left their bodies in poor condition, but they were small. Most were less than 2mm long. Only one plant had caught a pollinator. Statistically the length of the flower stems made no difference to the safety of the pollinators."

"But just because the stems didn't affect safety, it doesn't automatically follow that the other explanation, attracting pollinators, must be right by default. So I tested that too."

Flowers were cut from D. pauciflora and placed in test tubes. Some were set so the flowers were at normal height, while the other test tubes were buried so that the flower was barely above ground level. Anserson said: "Doing this meant there were few variables in the experiment. The flowers were identical. The only difference was their height. This way it's possible to simulate how well a Sundew that hadn't evolved a long stem could attract insects."

The results were emphatic. The taller flowers had ten times the number of visitors than the short flowers.

Anderson said: "There have been a few people who've suggested that the flower stalks are for attracting pollinators. However, the standard explanation in most textbooks is that the stems are to protect pollinators. It's a good story. It sounds like the kind of elegant solution that evolution comes up with. Now we have the hard data from these experiments and it shows that explanation is wrong. It's not about food, it's about sex. Sundews want to improve their chances of pollination and maximise their reproductive success."

Dr. David Frost | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>