Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar + weed killer = potential clean energy source

01.10.2009
A spoonful of herbicide helps the sugar break down in a most delightful way.

Researchers at Brigham Young University have developed a fuel cell – basically a battery with a gas tank – that harvests electricity from glucose and other sugars known as carbohydrates.

The human body’s preferred energy source could someday power our gadgets, cars or homes.

“Carbohydrates are very energy rich,” said BYU chemistry professor Gerald Watt. “What we needed was a catalyst that would extract the electrons from glucose and transfer them to an electrode.”

The surprising solution turned out to be a common weed killer, as reported by Watt and his colleagues in the October issue of the Journal of The Electrochemical Society. Watt shares his wonderfully appropriate last name with his great-great-uncle James Watt, the inventor of the steam engine.

The effectiveness of this cheap and abundant herbicide is a boon to carbohydrate-based fuel cells. By contrast, hydrogen-based fuel cells like those developed by General Motors require costly platinum as a catalyst.

The next step for the BYU team is to ramp up the power through design improvements.

The study reported experiments that yielded a 29 percent conversion rate, or the transfer of 7 of the 24 available electrons per glucose molecule.

“We showed you can get a lot more out of glucose than other people have done before,” said Dean Wheeler, lead faculty author of the paper and a chemical engineering professor in BYU’s Fulton College of Engineering and Technology. “Now we’re trying to get the power density higher so the technology will be more commercially attractive.”

Since they wrote the paper, the researchers’ prototype has achieved a doubling of power performance. And they’re pursuing an even stronger sugar high.

Joe Hadfield | EurekAlert!
Further information:
http://www.byu.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>