Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study raises the possibility that some antiviral drugs could make diseases worse

14.01.2010
Research published in the journal Genetics suggests that mutagenic drugs designed to kill viruses may make them stronger

As the flu season continues in full-swing, most people can appreciate the need for drugs that stop viruses after they take hold in the body. Despite this serious need for new drugs, a team of researchers from the University of Texas at Austin raise serious concerns about an emerging strategy for stopping viral infections.

According to their research report appearing in the January 2010 issue of the journal GENETICS, medications that cause viruses to die off by forcing their nucleic acid to mutate rapidly might actually, in some instances, cause them to emerge from the process stronger, perhaps even more virulent than before drug treatment.

"This work questions whether the practice of 'lethal mutagenesis' of viruses works as predicted," said Jim Bull, Ph.D., a researcher involved in the study from the Institute for Cellular and Molecular Biology at the University of Texas at Austin. "It remains to be seen whether an elevated mutation rate that does not cause rapid viral extinction enhances treatment or may instead thwart treatment by enhancing viral evolution." Bull's research collaborators included Rachael Springman, Thomas Keller, and Ian Molineux from the same institution.

Scientists tested the model of viral evolution at high mutation rates by growing a DNA virus in the presence of a mutagenic agent. The current accepted model predicted that the virus would not be able to handle the high mutation rates and would eventually die off. However, this study proved the model false, as the virus actually increased its fitness at elevated mutation rates. During this study, scientists found molecular evidence that rapid mutations had two effects. The first effect of most mutations, which was expected, was that they killed or weakened the virus. The second effect of some mutations, however, was that they actually helped the virus adapt and thrive. Although the researchers did not question that extremely high mutation will lead to viral extinction on the whole, this discovery raises the specter that forcing viruses to undergo rapid mutations could, if the mutation rate is not high enough, accidentally lead to well-adapted "super viruses."

"This study should raise more than a few eyebrows over this approach to stopping viruses," said Mark Johnston, Editor-in-Chief of the journal GENETICS, "because the last thing anyone wants to do is make a bad situation worse. More work must be done to determine the actual likelihood of this approach yielding a super virus, knowing that it is possible is a big help in preventing what could be a very big problem."

DETAILS: R. Springman, T. Keller, I. J. Molineux, and J. J. Bull
Evolution at a High Imposed Mutation Rate: Adaptation Obscures the Load in Phage T7

Genetics, Jan 2010; 184: 221 - 232.

Since 1916, GENETICS has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

Tracey DePellegrin Connelly | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>