Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds that fast-moving cells in the human immune system walk in a stepwise manner

18.03.2014

A team of biologists and engineers at the University of California, San Diego has discovered that white blood cells, which repair damaged tissue as part of the body's immune response, move to inflamed sites by walking in a stepwise manner.

The cells periodically form and break adhesions mainly under two "feet," and generate the traction forces that propel them forward by the coordinated action of contractile proteins. Their discovery, published March 17 in the Journal of Cell Biology, is an important advance toward developing new pharmacological strategies to treat chronic inflammatory diseases such as arthritis, irritable bowel syndrome, Type 1 diabetes, and multiple sclerosis.

"The immune system requires the migration of white blood cells to the point of infection and inflammation to clear invaders and begin the process of digesting and repairing tissue. However, when the body fails to properly regulate the recruitment of these cells, the inflammation can become chronic resulting in irreversible tissue injury and loss of functionality," said Juan C. Lasheras, a professor in the departments of Mechanical and Aerospace Engineering and Bioengineering, and in the Institute for Engineering in Medicine.

"Understanding the way in which these cells generate the necessary forces to move from the blood stream to the site of inflammation will guide the design of new strategies that could target specific mechanical processes to control their migration," Lasheras said.

... more about:
»Study

Figuring out how white blood cells move required an interdisciplinary approach involving engineering and biological sciences. The lead author of the study is Effie Bastounis, a member of a team led by UC San Diego Jacobs School of Engineering professors Lasheras and Juan Carlos del Alamo, of the Department of Mechanical and Aerospace Engineering, and Richard A. Firtel, a professor of Cell and Developmental Biology in the Division of Biological Sciences.

"This work was made possible through interdisciplinary approaches that applied mathematical tools to a basic question in cell biology about how cells move," stated Richard Firtel. "By first applying novel methodologies to study the amoeba Dictyostelium, an experimental system often used by cell biologists, we were able to discover the basic mechanisms that control amoeboid movement, which we then applied to understanding white blood cells."

The team used new analytical tools to measure, with a high degree of accuracy and resolution, the forces the cells exert to move forward. The novel methodology, which they have been refining during the last several years supported by grants from the National Institutes of Health (R01-GM084227 and R01-GM037830), is called Fourier Traction Force Microscopy. Before their study, scientists thought white blood cells did not move in a highly coordinated manner.

Furthermore, their work discovered that cells move by not only extending themselves at their front and contracting their backs, but also by squeezing inwardly along their lateral sides pushing the front of the cell forward. These findings establish a new paradigm as to how cell move. The research team is currently extending their techniques, which they have used to study leukocytes and other types of amoeboid cells, to investigate the mechanics of cancer cell migration and invasion.

Catherine Hockmuth | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Study

More articles from Life Sciences:

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

nachricht Sun protection for plants - Plant substances can protect plants against harmful UV radiation
22.08.2016 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

 
Latest News

Lehigh engineer discovers a high-speed nano-avalanche

24.08.2016 | Physics and Astronomy

Streamlining accelerated computing for industry

24.08.2016 | Physics and Astronomy

Recommended blood pressure targets for diabetes are being challenged

24.08.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>