Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Provides New Details of Fundamental Cellular Process

24.01.2012
Study of plant hormone could have far-reaching implications for cell biology and disease research

A recent Van Andel Research Institute (VARI) study published in the journal Science investigating the molecular structure and function of an essential plant hormone could profoundly change our understanding of a key cell process, and might ultimately lead to the development of new drugs for a variety of diseases.

The study builds on earlier work by the same team of investigators at VARI that was published in the journal Nature in 2009. That study shed light on how plants respond when they are under stress from extreme temperatures, drought and other harsh environmental conditions and was later named by Science as one of the top scientific breakthroughs of 2009.

Understanding how cells talk

In signal transduction – the basic process of intercellular and intracellular communication – enzymes known as kinases and phosphatases serve as the opposing partners and key regulators of this process.

VARI scientists mapping the structure of the receptor for Abscisic acid (ABA), a plant hormone that controls growth, development and responses to environmental stress, discovered that ABA regulates the stress-response pathway by affecting an enzyme belonging to the phosphatase family - which in turn binds to a kinase.

“This process has been little understood,” said Karsten Melcher, Ph.D., Head of the VARI Laboratory of Structural Biology and Biochemistry and co-author of the study. "We believe that the activation mechanism may in many cases also be structural. Phosphatases inactivate the active site like a plug – changing the shape of the kinase.”

"The textbook assumption has been that enzymatic phosphatases inhibit kinases only by taking away phosphates from the kinases. There have been few recorded examples of non-enzymatic phosphatases inhibiting kinases."

Knowing that these enzymes mimic the structure of the opposing enzyme enables scientists to more accurately develop mechanisms to activate or inhibit intercellular and intracellular communication. Inhibiting or activating this process in plant cells could lead to plants that more readily survive drought or other conditions of stress.

Possible impact on the treatment of diseases

In mammalian cells the ability to impact communication has numerous and far-reaching implications. For example, applications that inhibit or activate cell communication in out-of-control metastasizing cancer cells have enormous potential to affect tumor growth.

Writing in the journal Science, where the study was published on January 6, Jeffrey Leung notes that “molecular mimicry might be a common mechanism in many biological processes involving kinase-phosphatase complexes…The structural studies on the core ABA signaling proteins establish a new paradigm for kinase-phosphatase co-regulation and coevolution.”

The possibility of broader scientific implications is also noted by Melcher.

“The current studies take a step back from application and focus back on fundamental cellular mechanisms with a broad implication beyond ABA signaling,” said Melcher.

In their 2009 study in Nature, Melcher and H. Eric Xu, Ph.D., used X-ray crystallography to detail precisely how ABA works at the molecular level. One of ABA’s effects is to cause plant pores to close when plants are stressed so that they can retain as much water as possible.

In a follow-up 2010 study published in Nature Structural & Molecular Biology, the VARI team identified several synthetic compounds that fit well with ABA’s many receptors to have the same effect. By finding compounds that can close these pores, researchers’ findings could lead to sprays that use a plant’s natural defenses to help it survive harsh environmental conditions.
“This type of finding once again demonstrates the importance of identifying, mapping and understanding fundamental cellular and molecular processes because of the profound implications for human health,” said Xu, Director of the VARI Center for Structural Biology and Drug Discovery and co-author of the current Science study. “Proteins with similarities to plant ABA receptors are also found in humans and further studies in this area could reveal important implications for people with cellular stress disorders.”

The lead authors of the current Science study are Fen-Fen Soon, Ley-Moy Ng, and Edward Zhou. The project was carried out in conjunction and collaboration with scientists from the National University of Singapore, Purdue University, The Scripps Research Institute, Scripps Florida, Shanghai Institute of Materia Medica of the Chinese Academy of Sciences, the Synchrotron Research Center of Northwestern University, and University of California at Riverside.

Links to the study and to the Science editorial cited above can be found here:

http://www.sciencemag.org/content/335/6064/85.abstract

http://www.sciencemag.org/content/335/6064/46.full

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona.

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>