Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Provides New Details of Fundamental Cellular Process

24.01.2012
Study of plant hormone could have far-reaching implications for cell biology and disease research

A recent Van Andel Research Institute (VARI) study published in the journal Science investigating the molecular structure and function of an essential plant hormone could profoundly change our understanding of a key cell process, and might ultimately lead to the development of new drugs for a variety of diseases.

The study builds on earlier work by the same team of investigators at VARI that was published in the journal Nature in 2009. That study shed light on how plants respond when they are under stress from extreme temperatures, drought and other harsh environmental conditions and was later named by Science as one of the top scientific breakthroughs of 2009.

Understanding how cells talk

In signal transduction – the basic process of intercellular and intracellular communication – enzymes known as kinases and phosphatases serve as the opposing partners and key regulators of this process.

VARI scientists mapping the structure of the receptor for Abscisic acid (ABA), a plant hormone that controls growth, development and responses to environmental stress, discovered that ABA regulates the stress-response pathway by affecting an enzyme belonging to the phosphatase family - which in turn binds to a kinase.

“This process has been little understood,” said Karsten Melcher, Ph.D., Head of the VARI Laboratory of Structural Biology and Biochemistry and co-author of the study. "We believe that the activation mechanism may in many cases also be structural. Phosphatases inactivate the active site like a plug – changing the shape of the kinase.”

"The textbook assumption has been that enzymatic phosphatases inhibit kinases only by taking away phosphates from the kinases. There have been few recorded examples of non-enzymatic phosphatases inhibiting kinases."

Knowing that these enzymes mimic the structure of the opposing enzyme enables scientists to more accurately develop mechanisms to activate or inhibit intercellular and intracellular communication. Inhibiting or activating this process in plant cells could lead to plants that more readily survive drought or other conditions of stress.

Possible impact on the treatment of diseases

In mammalian cells the ability to impact communication has numerous and far-reaching implications. For example, applications that inhibit or activate cell communication in out-of-control metastasizing cancer cells have enormous potential to affect tumor growth.

Writing in the journal Science, where the study was published on January 6, Jeffrey Leung notes that “molecular mimicry might be a common mechanism in many biological processes involving kinase-phosphatase complexes…The structural studies on the core ABA signaling proteins establish a new paradigm for kinase-phosphatase co-regulation and coevolution.”

The possibility of broader scientific implications is also noted by Melcher.

“The current studies take a step back from application and focus back on fundamental cellular mechanisms with a broad implication beyond ABA signaling,” said Melcher.

In their 2009 study in Nature, Melcher and H. Eric Xu, Ph.D., used X-ray crystallography to detail precisely how ABA works at the molecular level. One of ABA’s effects is to cause plant pores to close when plants are stressed so that they can retain as much water as possible.

In a follow-up 2010 study published in Nature Structural & Molecular Biology, the VARI team identified several synthetic compounds that fit well with ABA’s many receptors to have the same effect. By finding compounds that can close these pores, researchers’ findings could lead to sprays that use a plant’s natural defenses to help it survive harsh environmental conditions.
“This type of finding once again demonstrates the importance of identifying, mapping and understanding fundamental cellular and molecular processes because of the profound implications for human health,” said Xu, Director of the VARI Center for Structural Biology and Drug Discovery and co-author of the current Science study. “Proteins with similarities to plant ABA receptors are also found in humans and further studies in this area could reveal important implications for people with cellular stress disorders.”

The lead authors of the current Science study are Fen-Fen Soon, Ley-Moy Ng, and Edward Zhou. The project was carried out in conjunction and collaboration with scientists from the National University of Singapore, Purdue University, The Scripps Research Institute, Scripps Florida, Shanghai Institute of Materia Medica of the Chinese Academy of Sciences, the Synchrotron Research Center of Northwestern University, and University of California at Riverside.

Links to the study and to the Science editorial cited above can be found here:

http://www.sciencemag.org/content/335/6064/85.abstract

http://www.sciencemag.org/content/335/6064/46.full

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona.

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>