Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Provides New Details of Fundamental Cellular Process

24.01.2012
Study of plant hormone could have far-reaching implications for cell biology and disease research

A recent Van Andel Research Institute (VARI) study published in the journal Science investigating the molecular structure and function of an essential plant hormone could profoundly change our understanding of a key cell process, and might ultimately lead to the development of new drugs for a variety of diseases.

The study builds on earlier work by the same team of investigators at VARI that was published in the journal Nature in 2009. That study shed light on how plants respond when they are under stress from extreme temperatures, drought and other harsh environmental conditions and was later named by Science as one of the top scientific breakthroughs of 2009.

Understanding how cells talk

In signal transduction – the basic process of intercellular and intracellular communication – enzymes known as kinases and phosphatases serve as the opposing partners and key regulators of this process.

VARI scientists mapping the structure of the receptor for Abscisic acid (ABA), a plant hormone that controls growth, development and responses to environmental stress, discovered that ABA regulates the stress-response pathway by affecting an enzyme belonging to the phosphatase family - which in turn binds to a kinase.

“This process has been little understood,” said Karsten Melcher, Ph.D., Head of the VARI Laboratory of Structural Biology and Biochemistry and co-author of the study. "We believe that the activation mechanism may in many cases also be structural. Phosphatases inactivate the active site like a plug – changing the shape of the kinase.”

"The textbook assumption has been that enzymatic phosphatases inhibit kinases only by taking away phosphates from the kinases. There have been few recorded examples of non-enzymatic phosphatases inhibiting kinases."

Knowing that these enzymes mimic the structure of the opposing enzyme enables scientists to more accurately develop mechanisms to activate or inhibit intercellular and intracellular communication. Inhibiting or activating this process in plant cells could lead to plants that more readily survive drought or other conditions of stress.

Possible impact on the treatment of diseases

In mammalian cells the ability to impact communication has numerous and far-reaching implications. For example, applications that inhibit or activate cell communication in out-of-control metastasizing cancer cells have enormous potential to affect tumor growth.

Writing in the journal Science, where the study was published on January 6, Jeffrey Leung notes that “molecular mimicry might be a common mechanism in many biological processes involving kinase-phosphatase complexes…The structural studies on the core ABA signaling proteins establish a new paradigm for kinase-phosphatase co-regulation and coevolution.”

The possibility of broader scientific implications is also noted by Melcher.

“The current studies take a step back from application and focus back on fundamental cellular mechanisms with a broad implication beyond ABA signaling,” said Melcher.

In their 2009 study in Nature, Melcher and H. Eric Xu, Ph.D., used X-ray crystallography to detail precisely how ABA works at the molecular level. One of ABA’s effects is to cause plant pores to close when plants are stressed so that they can retain as much water as possible.

In a follow-up 2010 study published in Nature Structural & Molecular Biology, the VARI team identified several synthetic compounds that fit well with ABA’s many receptors to have the same effect. By finding compounds that can close these pores, researchers’ findings could lead to sprays that use a plant’s natural defenses to help it survive harsh environmental conditions.
“This type of finding once again demonstrates the importance of identifying, mapping and understanding fundamental cellular and molecular processes because of the profound implications for human health,” said Xu, Director of the VARI Center for Structural Biology and Drug Discovery and co-author of the current Science study. “Proteins with similarities to plant ABA receptors are also found in humans and further studies in this area could reveal important implications for people with cellular stress disorders.”

The lead authors of the current Science study are Fen-Fen Soon, Ley-Moy Ng, and Edward Zhou. The project was carried out in conjunction and collaboration with scientists from the National University of Singapore, Purdue University, The Scripps Research Institute, Scripps Florida, Shanghai Institute of Materia Medica of the Chinese Academy of Sciences, the Synchrotron Research Center of Northwestern University, and University of California at Riverside.

Links to the study and to the Science editorial cited above can be found here:

http://www.sciencemag.org/content/335/6064/85.abstract

http://www.sciencemag.org/content/335/6064/46.full

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona.

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>