Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of key epigenetics component identified

04.09.2008
'Open source' data-sharing policy facilitates trio of papers

Scientists from the Structural Genomics Consortium (SGC) have determined the 3D structure of a key protein component involved in enabling "epigenetic code" to be copied accurately from cell to cell.

Epigenetic code is a series of chemical switches that is added onto our DNA in order to ensure that the cells in our body can form different types of tissue, for example liver and skin, despite having identical DNA genetic code.

When DNA is copied from cell to cell, it is essential that the epigenetic code is also copied accurately. If not, a liver cell may divide into another type of cell, such as a nerve or eye cell. A breakdown in this system might also mean that a gene for cell growth is accidentally switched on, for example, leading to unregulated cell growth and the development of tumours.

... more about:
»DNA »Genomics »Key »SGC »UHRF1 »epigenetic »genetic code »structural

Research published in 2007 showed the importance of the nuclear protein UHRF1 in ensuring that the epigenetic code is accurately copied. Epigenetic switches are created by the addition of a chemical group (methyl) to DNA in a process known as methylation, facilitated by the enzyme DNMT1. The researchers believe that when this code is copied, UHRF1 ensures the accuracy of the process, like a proof-reader checks a typeset article before printing.

The key element of UHRF1 involved in this "proofreading" process is known as the Set and Ring Associated (SRA) domain, but the exact mechanisms by which the SRA domain accomplishes this task were unclear. Today, in three different articles, the journal Nature publishes the structure of the key element of UHRF1 that facilitates this process.

"Given the increasing focus on epigenetics as a mechanism behind cancer, elucidating the structure of UHRF1 may provide crucial insights into what goes wrong," says Professor Sirano Dhe-Paganon from the Structural Genomics Consortium laboratories at the University of Toronto, Canada.

The structural papers not only represent an advance for the epigenetics field, but also an advance for how the science was done. The concurrent publication of the three papers highlights the competitive nature of this field, but in fact these papers were made possible because the SGC, in keeping with its policy of making its data freely and immediately available, made the underlying information available in the Protein Data Bank late in 2007. The availability of this information allowed the other groups to make more rapid progress in their own work.

"By releasing the structural information into the public databases as soon as it was available, we have ensured that other research groups could make immediate and maximum benefit from the shared knowledge," says Professor Dhe-Paganon.

Professor Masahiro Shirakawa from Kyoto University, Japan, openly acknowledges that the SGC data was crucial to his team's paper, which also appears in today's edition of Nature.

"We would like to express our gratitude to the researchers at the SGC for making their available on net," says Professor Shirakawa. "Structural biology is a complex, but very important field, with the potential to drive forward important research in many areas. The information provided by the SGC significantly speeded up our own work."

The SGC's "open source" policy contrasts with the accepted practice in the structural biology field, which is to make the underlying data available only after the work appears in print. However, Professor Al Edwards, Director of the SGC, believes strongly that data such as the 3D structure of proteins should be made freely available as soon as they are discovered.

"From the outset, it's been important to us to release our structural data immediately," says Professor Edwards. "This is contrary to the way many scientists work, but we believe it is crucial for facilitating scientific and medical progress, and our policy has not inhibited our ability to publish our work in the top journals. All the protein structures studied by the SGC have medical relevance and making them freely available ensures that scientists are able to use them to make progress in our understanding of disease and the development of new drugs."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

Further reports about: DNA Genomics Key SGC UHRF1 epigenetic genetic code structural

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>