Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroke: brain cells potentiate harmful electrical discharges

20.12.2016

In the aftermath of stroke, brain damage is exacerbated by electrical discharges. Researchers at the German Center for Neurodegenerative Diseases (DZNE) have investigated the mechanisms of these “spreading depolarizations” in mice, and found that brain cells termed astrocytes potentiate the fatal discharges. The study highlights potential counter-measures: a signaling pathway that acts upon the calcium concentration in astrocytes may be a potential starting point for treating stroke in humans. Dr. Cordula Rakers and Prof. Gabor Petzold report on these findings in the “Journal of Clinical Investigation”.

The brain depends on a constant supply of oxygen. This is why a stroke can have fatal consequences. Whether caused by cerebral hemorrhage or a blocked artery, the oxygen deficit triggers a rapid loss of nerve cells. Stroke is, therefore, one of the most common causes of death, and even if the patient survives, paralysis, speech difficulties or other disabilities may remain depending on which part of the brain was injured.


In their scientific study, DZNE researchers have found that certain brain cells interact in a detrimental way during stroke. Harmful electrical discharges are thereby amplified. This microscopic image shows brain cells (blue and green) of a mouse. Blood vessels are colored in red. Source: DZNE/Cordula Rakers

The damaged area can even expand to some extent. This is due to “spreading depolarizations”, which can occur minutes after a stroke and may recur over the following days. They start at the infarct core and engulf the surrounding tissue like an avalanche. These electrical discharges put the cells under severe stress.

“The spreading depolarizations radiate into the healthy tissue. Each wave can increase the volume of the brain affected by stroke,” says Petzold. “Incidentally, these depolarizations do not occur only in stroke but also in other severe brain injuries. A therapy might therefore be relevant for many neurological diseases.”

Favourable opportunities for treatment might arise from the fact that the discharges spread over several days. Petzold notes: “Each wave is potentially harmful. However, the damage occurs gradually as there is a cumulative effect. Treatment could therefore have a positive impact, even if it is given days after the stroke. The time window for treating spreading depolarizations might therefore be larger than in established therapies against stroke.”

Harmful interaction between nerve cells and astrocytes

DZNE researchers have now discovered how various events and cell types interact during spreading depolarizations, thereby intensifying the discharge. Cells known as astrocytes play a key role. These cells form a dense network with the brain’s nerve cells and are involved in various metabolic processes.

“When nerve cells depolarize, they release large quantities of the neurotransmitter glutamate. Glutamate then diffuses to other cells, in particular to neighboring astrocytes,” explains Petzold.

“This was known before. However, we have now been able to show what follows this event. The glutamate causes calcium levels in the astrocytes to soar. As a result, the astrocytes release glutamate as well. This in turn can act on nerve cells. A vicious circle emerges that potentiates the spreading depolarizations. This process is amplified by the astrocytes.”

The neuroscientists were also able to show that certain drugs can interrupt this chain of events. Ultimately, these drugs reduce the abnormally elevated calcium levels in astrocytes. “At present, there is no established treatment that directly affects spreading depolarizations. Our results show that it is possible to reduce the frequency and severity of these discharges by modulating the astrocytes’ calcium metabolism. In theory, this could also be possible in humans. This could lead to a new approach to treating stroke,” says Petzold.

Original publication
“Astrocyte calcium mediates peri-infarct depolarizations in a rodent stroke model”, Cordula Rakers and Gabor C. Petzold, Journal of Clinical Investigation, DOI: http://dx.doi.org/10.1172/JCI89354

Weitere Informationen:

https://www.dzne.de/en/about-us/public-relations/news/2016/press-release-no-24.h...

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft
Further information:
http://www.dzne.de

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>