Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Strategy Likely to Speed Drug Development for Rare Cancers

19.09.2011
Researchers have identified promising new therapies for ependymoma, a rare tumor with few treatment options. St. Jude Children’s Research Hospital investigators led the effort, which used a new, faster drug development system that combines the latest drug screening technology with the first accurate animal model of the tumor.

Investigators identified several dozen new and existing drugs as possible ependymoma treatment candidates. The drugs were found by screening 5,303 existing medicines, natural products and other compounds for activity against the tumor, which develops in the brain and spine of children and adults. The work is published in the current edition of the scientific journal Cancer Cell.

The list of candidate drugs included 5-fluorouracil (5-FU). 5-FU has been widely used to treat a variety of adult cancers but has not been formally tested against ependymoma. Based on study results, St. Jude is planning a clinical trial of 5-FU in young ependymoma patients, said senior author Richard Gilbertson, M.D., Ph.D., director of the St. Jude Comprehensive Cancer Center. Gilbertson credited the method used in this study with highlighting 5-FU’s potential.

Researchers hope to use the same system to expand chemotherapy options for patients with other cancers. “This approach should significantly advance the efficiency and speed with which we discover and develop new treatments for rare cancers and cancer subtypes,” the investigators noted. Jennifer Atkinson, Ph.D., a former St. Jude postdoctoral fellow, is the first author. R. Kiplin Guy, Ph.D., chair of the St. Jude Department of Chemical Biology and Therapeutics, and Gilbertson are corresponding authors.

Rather than waiting years for clinical trial results, this system promises to take just months to provide key information about a drug’s effectiveness and optimal administration, Gilbertson said.

The results are good news for patients with ependymoma and other cancers where treatment options are limited and the outlook remains bleak. While overall childhood cancer survival rates are now almost 80 percent, ependymoma remains incurable in up to 40 percent of patients. The tumor is found in 150 to 200 U.S. children annually, making it the third most common pediatric brain tumor. Treatment has changed little in the past 40 years and is limited to surgery and radiation.

Along with identifying and prioritizing drug development candidates against ependymoma, the research provided insight into the tumor’s biology. The screening identified several messenger proteins, known as kinases, as possible new regulators of the tumor cell proliferation that makes cancer deadly. The abnormal tumor kinase activity occurred in certain pathways in tumor cells, including the insulin-signaling pathway and the centrosome cycle.

This study builds on earlier research led by Gilbertson that showed ependymoma includes nine different tumor subtypes. Each begins when particular mutations occur in stem cells from different regions of the brain or spine. Stem cells are the specialized cells that can divide and take on more specific functions.

For this project, investigators focused on a subtype D ependymoma. In earlier research, Gilbertson and his colleagues showed that extra copies of the EPHB2 gene caused this tumor subtype. The investigators used this information to develop an accurate model of subtype D ependymomas in mice. The mouse model includes the same mutation in the same neural stem cell responsible for the human disease and was crucial for speeding drug development.

Researchers used an automated system to check 5,303 existing drugs, natural products and other compounds for activity against four different types of mouse brain cells, including normal neural stem cells, subtype D ependymoma tumor cells and cells from a different brain tumor.

Of the 634 compounds that showed activity against subtype D ependymoma cells, four demonstrated a two-fold greater ability to block the growth of the tumor cells, but not normal cells. The drugs included 5-FU and two closely related compounds. The fourth was beta-escin, which belongs to a family of drugs that are generating interest as potential chemotherapy agents.

5-FU also proved more effective than four other chemotherapy drugs in slowing tumor growth and extending the lives of mice with subtype D ependymoma. 5-FU also appeared less toxic to normal mouse brain cells than another drug, bortezomib, included in the study. The findings provided preliminary evidence that the screening system might provide an early indication of drug toxicity. The information could help guide treatment and prioritize drugs for development, researchers said.

The screening also highlighted a possible role for kinase inhibitors. Those are drugs that block activity of proteins that help drive cell division and sustain tumors. More than 18 inhibitors are in clinical trials that target the kinases this study tied to proliferation of both normal and ependymoma tumor cells.

The study’s other authors are Anang Shelat, Tanya Kranenburg, Nidal Boulos, Karen Wright, Helen Poppleton, Kumarasamypet Mohankumar, Timothy Phoenix, Paul Gibson, Liqin Zhu, Yiai Tong, Chris Eden, David Ellison, Amar Gajjar and Clinton Stewart, all of St. Jude; Angel Montero Carcaboso, Alexander Arnold, Robert Johnson Clementine Feau, all formerly of St. Jude; and Waldemar Priebe, Dimpy Koul and W.K. Alfred Yung, of University of Texas MD Anderson Cancer Center.

The study was funded in part by the National Institutes of Health, the Collaborative Ependymoma Research Network and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other life-threatening diseases. The hospital’s research has helped push overall survival rates for childhood cancer from less than 20 percent when the institution opened to almost 80 percent today. It is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children, and no family ever pays St. Jude for care.

Summer Freeman | Newswise Science News
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>