Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Two steps” ahead in cystic fibrosis research

13.03.2012
New research could provide roadmap for more effective drug discovery for CF
A recent study led by Gergely Lukacs, a professor at McGill University's Faculty of Medicine, Department of Physiology, and published in the January issue of Cell, has shown that restoring normal function to the mutant gene product responsible for cystic fibrosis (CF) requires correcting two distinct structural defects. This finding could point to more effective therapeutic strategies for CF in the future.

CF, a fatal genetic disease that affects about 60,000 people worldwide, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a membrane protein involved in ion and water transport across the cell surface. As such, CF is characterized by impaired chloride secretion causing the accumulation of viscous mucous that may cause multiple organ dysfunctions, including recurrent lung infection.

The most common mutation in CFTR, known as deltaF508, is caused by a single amino acid deletion and results in a misfolded version of CFTR that is retained within the cell and quickly degrades rather than being trafficked to the cell membrane where it would function as a chloride channel.

In 2005, Lukacs and his lab suggested that deltaF508 mutation effect is not restricted to the domain (the nucleotide binding domain 1 or NBD1, one of five building blocks of CFTR) where the deltaF508 is located. Specifically, his team found that the mutation destabilizes the NBD1 as well as the NBD2 architecture, suggesting that domain-domain interaction plays a critical role in both normal and pathological CFTR folding.

Building on his team's previous work and computer generated models of CFTR, Lukacs and his team set out to determine whether it was possible to correct both NBD1 stability and domain-domain interaction defect. Using a combination of biophysical, biochemical and genetic techniques, the team found that only simultaneous correction of both folding defects was able to ensure normal-like cell surface expression and function of the mutant.

"These findings offer a plausible explanation for the limited efficiency of the available correctors currently under clinical trial. If there are two different folding steps to correct, it is difficult to envision how a single drug could work," explained Lukacs. "The proposed two-step folding model points to the fact that the correction strategy has to be reconsidered."

The study was funded in part by The Cystic Fibrosis Foundation, Cystic Fibrosis Canada, The Canadian Institutes for Health Research (CIHR), Canada Research Chair (CRC) program and the Canada Foundation for Innovation (CFI).

For more information on the study, please visit:
http://www.cell.com/abstract/S0092-8674(11)01368-7

Allison Flynn | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>