Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cell Therapy May Offer Hope for Acute Lung Injury

30.10.2009
Researchers at the University of Illinois at Chicago College of Medicine have shown that adult stem cells from bone marrow can prevent acute lung injury in a mouse model of the disease.

Their results are reported online in the October issue of the journal Stem Cells.

Acute lung injury (ALI) is responsible for an estimated 74,500 deaths in the U.S. each year. ALI can be caused by any major inflammation or injury to the lungs and is a major cause of death in patients in hospital ICUs. There is no effective drug treatment.

In ALI, the layer of cells that forms the lining of the blood vessels surrounding the lung's air sacs is damaged, allowing fluid to leak in and fill the sacs. Repair of these breaks in the endothelium, or lining, is complicated by the fact that endothelial cells are long-lived, says Kishore Wary, UIC assistant professor of pharmacology and lead author of the study. Turnover of new cells takes as long as two to five years, and few of the precursor cells needed for replacement circulate in the body at any given time.

"The stem cells that might be able repair the damage caused by ALI are simply not on hand," he said.

Wary and his colleagues were able to identify progenitor stem cells in the bone marrow of mice that could prevent and treat experimentally-induced ALI. These progenitor stem cells, named Flk-1 and CD34 for the proteins on their surfaces, constitute a very small percentage of the stem cell population in the bone marrow, but the researchers were able to develop a way of culturing the cells that increased their numbers and their "stickiness."

The stem cells stud their surface with molecules called integrins that allow the cells to stick to their targets and affect the repair. "Increasing this capacity for stickiness in our culture system was likely to make the stem cells more effective in repair," Wary said.

When mice that had been injected with a compound that causes ALI were injected with the purified and cultured Flk and CD34 stem cells, the progenitor cells were able to repair the lung injury, prevent fluid build-up, and led to improved survival.

The mouse disease model not only demonstrated that stem cell treatment is a promising therapy for ALI, Wary said, "but also provided us with the means to understand how these progenitor cells did their repair work. These therapeutic cells employed integrins to stick to the site of injury and turn on cellular and molecular repair machinery," he said.

The researchers hope to explore the possibility of using stem cell therapy in human acute lung injury.

The research was supported by grants from the National Institutes of Health. Stephen M. Vogel, Sean Garrean, Yidan D. Zhao and Asrar B. Malik, all of the department of pharmacology in the UIC College of Medicine, also contributed to the study.

Jeanne Galatzer-Levy | Newswise Science News
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>