Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cell Therapy May Offer Hope for Acute Lung Injury

30.10.2009
Researchers at the University of Illinois at Chicago College of Medicine have shown that adult stem cells from bone marrow can prevent acute lung injury in a mouse model of the disease.

Their results are reported online in the October issue of the journal Stem Cells.

Acute lung injury (ALI) is responsible for an estimated 74,500 deaths in the U.S. each year. ALI can be caused by any major inflammation or injury to the lungs and is a major cause of death in patients in hospital ICUs. There is no effective drug treatment.

In ALI, the layer of cells that forms the lining of the blood vessels surrounding the lung's air sacs is damaged, allowing fluid to leak in and fill the sacs. Repair of these breaks in the endothelium, or lining, is complicated by the fact that endothelial cells are long-lived, says Kishore Wary, UIC assistant professor of pharmacology and lead author of the study. Turnover of new cells takes as long as two to five years, and few of the precursor cells needed for replacement circulate in the body at any given time.

"The stem cells that might be able repair the damage caused by ALI are simply not on hand," he said.

Wary and his colleagues were able to identify progenitor stem cells in the bone marrow of mice that could prevent and treat experimentally-induced ALI. These progenitor stem cells, named Flk-1 and CD34 for the proteins on their surfaces, constitute a very small percentage of the stem cell population in the bone marrow, but the researchers were able to develop a way of culturing the cells that increased their numbers and their "stickiness."

The stem cells stud their surface with molecules called integrins that allow the cells to stick to their targets and affect the repair. "Increasing this capacity for stickiness in our culture system was likely to make the stem cells more effective in repair," Wary said.

When mice that had been injected with a compound that causes ALI were injected with the purified and cultured Flk and CD34 stem cells, the progenitor cells were able to repair the lung injury, prevent fluid build-up, and led to improved survival.

The mouse disease model not only demonstrated that stem cell treatment is a promising therapy for ALI, Wary said, "but also provided us with the means to understand how these progenitor cells did their repair work. These therapeutic cells employed integrins to stick to the site of injury and turn on cellular and molecular repair machinery," he said.

The researchers hope to explore the possibility of using stem cell therapy in human acute lung injury.

The research was supported by grants from the National Institutes of Health. Stephen M. Vogel, Sean Garrean, Yidan D. Zhao and Asrar B. Malik, all of the department of pharmacology in the UIC College of Medicine, also contributed to the study.

Jeanne Galatzer-Levy | Newswise Science News
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>