Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy for age-related macular degeneration -- a step closer to reality

24.03.2011
The notion of transplanting adult stem cells to treat or even cure age-related macular degeneration has taken a significant step toward becoming a reality. In a study published today in Stem Cells, Georgetown University Medical Center researchers have demonstrated, for the first time, the ability to create retinal cells derived from human-induced pluripotent stem cells that mimic the eye cells that die and cause loss of sight.

Age-related macular degeneration (AMD) is a leading cause of visual impairment and blindness in older Americans and worldwide. AMD gradually destroys sharp, central vision needed for seeing objects clearly and for common daily tasks such as reading and driving. AMD progresses with death of retinal pigment epithelium (RPE), a dark color layer of cells which nourishes the visual cells in the retina.

While some treatments can help slow its progression, there is no cure. The discovery of human induced pluripotent stem (hiPS) cells has opened a new avenue for the treatment of degenerative diseases, like AMD, by using a patient's own stem cells to generate tissues and cells for transplantation.

For transplantation to be viable in age-related macular degeneration, researchers have to first figure out how to program the naïve hiPS cells to function and possess the characteristics of the native retinal pigment epithelium, RPE, the cells that die off and lead to AMD.

The research conducted by the Georgetown scientists shows that this critical step in regenerative medicine for AMD has greatly progressed.

"This is the first time that hiPS-RPE cells have been produced with the characteristics and functioning of the RPE cells in the eye. That makes these cells promising candidates for retinal regeneration therapies in age-related macular degeneration," says the study's lead author Nady Golestaneh, Ph.D., assistant professor in GUMC's Department of Biochemistry and Molecular & Cellular Biology.

Using an established laboratory stem cell line, Golestaneh and her colleagues show that RPE generated from hiPS cells under defined conditions exhibit ion transport, membrane potential, polarized VEGF secretion and gene expression profile similar to those of a normal eye's RPE.

"This isn't ready for prime time though. We also identified some issues that need to be worked out before these cells are ready for transplantation but overall, this is a tremendous step forward in regenerative medicine," Golestaneh adds.

She explains that the hiPS-derived RPE cells show rapid telomere shortening, DNA chromosomal damage and increased p21 expression that cause cell growth arrest. This might be due to the random integration of viruses in the genome of skin fibroblasts during the reprogramming of iPS cells. Therefore, generation of viral-free iPS cells and their differentiation into RPE will be a necessary step towards implementation of these cells in clinical application, Golestaneh says.

"The next step in this research is to focus on a generation of 'safe' as well as viable hiPS-derived somatic cells," Golestaneh concludes.

Other authors on the paper include first author Maria Kokkinaki, Ph.D., Department of Biochemistry and Molecular &Cellular Biology, and Niaz Sahibzada, Ph.D., Department of Pharmacology at GUMC.

This work was funded by the National Institutes of Health. The authors report no personal financial interests related to this study.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Georgetown Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO). In fiscal year 2009-2010, GUMC accounted for 79 percent of Georgetown University's extramural research funding.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>