Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sponge shines light on life's origin

Genome connects the dots between Amphimedon, animal descendants

The simple sponge can reveal much about life on Earth. Researchers who have sequenced the genome of one Down Under inhabitant are learning just how common those roots are.

In a paper published online this week in the journal Nature, Rice University's Nicholas Putnam is among a group of scientists who have established a draft genome sequence for Amphimedon queenslandica, a sponge found off the coast of Australia. The genome is helping evolutionary biologists connect the dots as they look for DNA sequences shared by metazoans, or multicelled animals.

Sponges are an ancient group, with fossils dating back at least 650 million years. They are thought to have been the first group of animals to branch from all the others. Therefore, genes shared by sponges and other animals must have been present in the common ancestor of all metazoans. This ancestor would have evolved mechanisms to coordinate cell division, growth, specialization, adhesion and death; this suggests that early sponges already had a developmental set of tools similar to those in metazoans today, said Putnam, an assistant professor of ecology and evolutionary biology.

"What's exciting is the new things we're learning about animal evolution," said Putnam, who got involved with the project while working at the Department of Energy's Joint Genome Institute in 2006. "For example, sponges have embryos, and having the genome helps us look at how they develop and make specific connections to developmental pathways in other animals.

"It's the kind of thing that will lead to a much clearer understanding of what the very first metazoans looked like," he said.

That distant ancestor may well have looked like a sponge. For the paper, Putnam helped compare Amphimedon's draft genome with 13 other complete animal genomes, including a selection of invertebrates, as well as a choanoflagellate. The researchers wrote of a "striking conservation of gene structure and genome organization" that is common to all. "We can now say that the large-scale patterns of genome organization we've seen conserved in other animal groups come from the very root of the animal tree," Putnam said.

The challenge ahead is learning what they do. "The focus of my research is to understand whether patterns that have been around for a billion years have some particular functions -- or if they're hanging around because not enough time has gone by to erase them."

What's missing is also interesting, he said. The ancestral patterns of genome organization common to other creatures is absent from certain arthropods -- invertebrates that include the likes of centipedes and lobsters -- and nematodes. "If the missing pattern is neutral, you'd say that somewhere along the history of those groups, the rate of (evolutionary) change sped up enough to break the connection," Putnam said. "If it's functional, then somehow those groups overcame whatever constraint is on it in other lineages."

Also puzzling is that while Amphimedon shares key developmental genes with a diverse set of metazoans, its basic structure hasn't changed in 600 million years. Given the same roots, researchers wonder why it didn't evolve more radically, and they are working to identify the differences that gave rise to, say, nerve cells in other creatures but not sponges.

Unlocking the basic mechanisms of multicellularity may also help researchers understand what happens when those mechanisms go wrong and lead to cancer and autoimmune disorders.

The paper's senior authors are Daniel Rokhsar of the University of California, Berkeley, and Bernard Degnan of the University of Queensland in Australia.

The work was funded by the Australian Research Council, the Department of Energy Joint Genome Institute, Harvey Karp, the National Science Foundation, the National Institutes of Health/National Human Genome Research Institute, the University of Queensland Postdoctoral Fellowship, the Sars International Center for Marine Molecular Biology, Deutsche Forschungsgemeinschaft, Agricultural and Natural Resources/University of California, the French National Center for Scientific Research, the Gordon and Betty Moore Foundation and Richard Melmon.

David Ruth | EurekAlert!
Further information:

Further reports about: Amphimedon Australia DNA sequence Foundation Genom Queensland nerve cell sponge

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>