Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sponge shines light on life's origin

05.08.2010
Genome connects the dots between Amphimedon, animal descendants

The simple sponge can reveal much about life on Earth. Researchers who have sequenced the genome of one Down Under inhabitant are learning just how common those roots are.

In a paper published online this week in the journal Nature, Rice University's Nicholas Putnam is among a group of scientists who have established a draft genome sequence for Amphimedon queenslandica, a sponge found off the coast of Australia. The genome is helping evolutionary biologists connect the dots as they look for DNA sequences shared by metazoans, or multicelled animals.

Sponges are an ancient group, with fossils dating back at least 650 million years. They are thought to have been the first group of animals to branch from all the others. Therefore, genes shared by sponges and other animals must have been present in the common ancestor of all metazoans. This ancestor would have evolved mechanisms to coordinate cell division, growth, specialization, adhesion and death; this suggests that early sponges already had a developmental set of tools similar to those in metazoans today, said Putnam, an assistant professor of ecology and evolutionary biology.

"What's exciting is the new things we're learning about animal evolution," said Putnam, who got involved with the project while working at the Department of Energy's Joint Genome Institute in 2006. "For example, sponges have embryos, and having the genome helps us look at how they develop and make specific connections to developmental pathways in other animals.

"It's the kind of thing that will lead to a much clearer understanding of what the very first metazoans looked like," he said.

That distant ancestor may well have looked like a sponge. For the paper, Putnam helped compare Amphimedon's draft genome with 13 other complete animal genomes, including a selection of invertebrates, as well as a choanoflagellate. The researchers wrote of a "striking conservation of gene structure and genome organization" that is common to all. "We can now say that the large-scale patterns of genome organization we've seen conserved in other animal groups come from the very root of the animal tree," Putnam said.

The challenge ahead is learning what they do. "The focus of my research is to understand whether patterns that have been around for a billion years have some particular functions -- or if they're hanging around because not enough time has gone by to erase them."

What's missing is also interesting, he said. The ancestral patterns of genome organization common to other creatures is absent from certain arthropods -- invertebrates that include the likes of centipedes and lobsters -- and nematodes. "If the missing pattern is neutral, you'd say that somewhere along the history of those groups, the rate of (evolutionary) change sped up enough to break the connection," Putnam said. "If it's functional, then somehow those groups overcame whatever constraint is on it in other lineages."

Also puzzling is that while Amphimedon shares key developmental genes with a diverse set of metazoans, its basic structure hasn't changed in 600 million years. Given the same roots, researchers wonder why it didn't evolve more radically, and they are working to identify the differences that gave rise to, say, nerve cells in other creatures but not sponges.

Unlocking the basic mechanisms of multicellularity may also help researchers understand what happens when those mechanisms go wrong and lead to cancer and autoimmune disorders.

The paper's senior authors are Daniel Rokhsar of the University of California, Berkeley, and Bernard Degnan of the University of Queensland in Australia.

The work was funded by the Australian Research Council, the Department of Energy Joint Genome Institute, Harvey Karp, the National Science Foundation, the National Institutes of Health/National Human Genome Research Institute, the University of Queensland Postdoctoral Fellowship, the Sars International Center for Marine Molecular Biology, Deutsche Forschungsgemeinschaft, Agricultural and Natural Resources/University of California, the French National Center for Scientific Research, the Gordon and Betty Moore Foundation and Richard Melmon.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Amphimedon Australia DNA sequence Foundation Genom Queensland nerve cell sponge

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>