Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The spliceosome: More than meets the eye

27.09.2013
Scientists are unraveling the secrets of the mechanism that snips our genes

Certain diseases such as cystic fibrosis and muscular dystrophy are linked to genetic mutations that damage the important biological process of rearranging gene sequences in pre-messenger RNA, a procedure called RNA splicing.


The single-molecule florescence microscope can view individual molecules.

Credit: Diana Hunt

These conditions are difficult to prevent because scientists are still grasping to understand how the splicing process works. Now, researchers from Brandeis University and the University of Massachusetts Medical School have teamed up to unravel a major component in understanding the process of RNA splicing.

In a recent paper published in Cell Press, research specialist Inna Shcherbakova of Brandeis and UMMS, and a team of researchers led by professors Jeff Gelles (Brandeis) and Melissa J. Moore (UMMS), explain how the molecular machine known as the spliceosome begins the process of rearranging gene sequences.

In order to convey instructions for synthesizing protein to the ribosome, RNA — a transcribed copy of DNA — must be translated into mRNA. Part of the process of translating pre-messenger RNA into mRNA involves cutting out gene segments that don't contain information relevant to protein synthesis, called introns, and connecting the remaining pieces together.

The spliceosome does the genetic cutting and pasting. It is a complicated complex, made up of four major parts and more than 100 accessory proteins that come together and break apart throughout the splicing process. Think of the spliceosome as an old Transformers robot — it has individual pieces that operate independently but can also come together to form a larger structure.

Sometimes, such as in the case of cystic fibrosis, a mutation will cause the spliceosome to snip in the wrong place, cutting out important sequences instead of introns, and resulting in the production of a faulty protein.

In studying the Transformer-like spliceosome, researchers have been unable to reconcile how the different components of the complex coordinate. To initiate the splicing process, two pieces of the spliceosome bind to the two ends of an intron. Until now, scientists believed this to be highly ordered process: first Part 1 bound, and then it would somehow tell Part 2 to attach.

In a highly ordered process in primitive organisms such as yeast, the introns are small and it's easy for Part 1 and Part 2 to communicate. But how would that process work in humans, where introns are made up of thousands of nucleotides? How could the two parts — which jumpstart the whole splicing process — communicate?

To find out, Shcherbakova aimed a single-molecule florescence microscope built in the Gelles lab at the spliceosome. By tagging the different parts of the complex with fluorescent colors, the team discovered that the process is more flexible than scientists imagined.

The two first major components of the spliceosome do not need to communicate with one another to start the splicing process, nor does it matter which piece attaches to the gene first. Either of the components, called U1 and U2, can attach first and the process works equally well.

"The process is much more sensible than we originally thought," Gelles says.

Now that scientists understand how the major components of splicing can come together, they can study how the different steps of the process are orchestrated.

"We are just scratching the surface in understanding this process, but ultimately, we hope to understand how this process goes wrong and how it can be fixed," Gelles says.

Leah Burrows | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>