Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spine function improves following cell replacement therapy with fetal human stem cells

28.05.2013
Human foetal stem cell grafts improve both motor and sensory functions in rats suffering from a spinal cord injury, according to research published this week in BioMed Central's open access journal Stem Cell Research and Therapy. This cell replacement therapy also improves the structural integrity of the spine, providing a functional relay through the injury site. The research gives hope for the treatment of spinal cord injuries in humans.

Grafting human neural stem cells into the spine is a promising approach to promote the recovery of function after spinal injury. Sebastian van Gorp, from the University of California San Diego, and team's work looks specifically at the effect of intraspinal grafting of human foetal spinal cord-derived neural stem cells on the recovery of neurological function in a rats with acute lumbar compression injuries.

A total of 42 three month-old female Sprague-Dawley rats, with spinal compression injuries, were allocated to one of three groups. The rats in the first group received a spinal injection with the stem cells, those in the second group received a placebo injection, while those in the third group received no injection.

Treatment effectiveness was assessed by a combination of measures, including motor and sensory function tests, presence of muscle spasticity and rigidity which causes stiffness and limits residual movement. The team also evaluated of how well the grafted cells had integrated into the rodents' spines.

Gorp and colleagues found that, compared to rats who received either the placebo injection or no injection, those who received the stem cell grafts showed a progressive and significant improvement in gait/paw placement, reduced muscle spasticity as well as improved sensitivity to both mechanical and thermal stimuli. In addition to these behavioural benefits, the researchers observed long-term improvements in the structural integrity of previously injured spinal cord segments.

The authors say: "Importantly, spinal cavity formation and muscle spasticity are frequently observed in human patients with high-speed, high-impact induced spinal cord injuries. Our findings demonstrate that human foetal spinal cord-derived neural stem cells, with an already established favorable clinical safety profile, represent a potential cell candidate for cell replacement therapy in patients with traumatic spinal injuries."

Media Contact
Dr Hilary Glover
Scientific Press Officer, BioMed Central
Mob: +44 (0) 778 698 1967
Notes to Editors
1. Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation
Sebastiaan van Gorp, Marjolein Leerink, Osamu Kakinohana, Oleksandr Platoshyn, Camila Santucci, Jan Galik, Elbert A Joosten, Marian Hruska-Plochan, Danielle Goldberg, Silvia Marsala, Karl Johe, Joseph D Ciacci and Martin Marsala

Stem Cell Research & Therapy 2013 4:57

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

2. Stem Cell Research & Therapy is the major forum for translational research into stem cell therapies. An international peer-reviewed journal, it publishes high quality open access research articles with a special emphasis on basic, translational and clinical research into stem cell therapeutics and regenerative therapies, including animal models and clinical trials. The journal also provides reviews, viewpoints, commentaries and reports.

3. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector. @BioMedCentral

Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

Further reports about: BioMed STM Stem cell innovation cell death neural stem cells spinal cord spine stem cells

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>