Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spider love: Little guys get lots more

Big males outperform smaller ones in head-to-head mating contests but diminutive males make ten times better lovers because they're quicker to mature and faster on their feet, a new study of redback spiders reveals.

Published in the current online issue of Journal of Evolutionary Biology, the study shows the importance of maturation in defining mating and paternity success. In field enclosures, researchers simulated two competitive contexts favouring the development of differently sized male redbacks (Latrodectus hasselti).

The larger males were more successful at mating with and impregnating females when they competed directly with smaller males. However, when faster maturing smaller males were given a one-day head start, reflecting their earlier maturation in nature, they had a ten-times higher paternity rate than larger males.

Courtship between redbacks lasts an average of 50 minutes when males are competing and 4.5 hours for single, non-competing males. Copulation lasts from 6 to 31 minutes, and males are usually injured or killed during the process.

"The results reveal that big males don't get it all their own way," says lead author, UNSW postdoctoral fellow, Dr Michael Kasumovic, who co-authored the paper with Maydianne Andrade of the University of Toronto. "Nature favours larger and smaller males under different circumstances. Larger males experienced a longer maturation process so they are unable to search for and mate with females and produce offspring at the same rate as smaller redback spiders.

"Large size and weaponry are strong predictors of a male's competitive strengths because those traits help them dominate smaller males when they compete for food and mating rights. However, evidence from studies of midges, dung flies and seed beetles reveals that smaller males develop sooner than larger males and often mate before larger competing males arrive on the scene. Size isn't the only ruler by which we can measure a male's quality. Many other factors, including maturation time, are critical in that definition."

Dr. Michael Kasumovic | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>