Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New species discovered on whale skeletons

18.09.2009
When a whale dies, it sinks to the seafloor and becomes food for an entire ecosystem. Researchers at the University of Gothenburg, Sweden, have discovered previously unknown species that feed only on dead whales - and use DNA technology to show that the species diversity in our oceans may be higher than previously thought.

Dead whales constitute an unpredictable food source - it is impossible to know when and where a whale is going to die, and when it does, the food source does not last forever. Nevertheless, some marine species have specialised in feeding on whale cadavers.

Big source of nutrients

This is shown by researchers at the University of Gothenburg who have studied the ecosystem around dead whales using underwater cameras. A dead whale is an enormous source of nutrients. In fact, one cadaver offers the same amount of nutrients that normally sinks from the surface to the seafloor in 2000 years, and this is of great benefit to innumerable species: First the meat is eaten by for example sharks and hagfish, then tremendous amounts of various organisms come to feast on the skeleton.

Specialised worms

One group of animals commonly found on whale skeletons is bristleworms, which are related to the earthworm. Some bristleworm species are so specialised in eating dead whales they would have problems surviving elsewhere. One example is Osedax, which uses its root system to penetrate the whale bones when searching for food. Other species specialise in eating the thick layers of bacteria that quickly form around the bones.

Nine new species

A dissertation from the Department of Zoology at the University of Gothenburg describes no fewer than nine previously unknown species of these bacteria-grazing bristleworms.

Cryptic species

Four of the new species were found on whale cadavers placed at a depth of 125 metres in the new national park Kosterhavet off the coast of Strömstad, Sweden. The other five species feed on whale bones in the deep waters off the coast of California, USA. The family tree of bristleworms was explored using molecular data. The DNA analyses show that there are several so-called cryptic bristleworm species, meaning species that despite looking identical differ very much genetically.

Significant findings

The analyses show that the adaptation to a life on whale cadavers has occurred in species from different evolutionary paths and at several points in time. The study also shows that some species that are assumed to inhabit many different areas globally, so-called cosmopolitan species, may in fact be cryptic species. This finding may be very significant for our understanding of how animals spread around the world and of how many different species dwell on our planet.

The dissertation Evolution of annelid diversity at whale-falls and other marine ephemeral habitats will be publicly defended on 25 September.

Contact:Helena Wiklund, Department of Zoology, University of Gothenburg

This thesis is supported by the following papers:
I. Dahlgren TG, Wiklund H, Källström B, Lundälv T, Smith CR,
Glover AG. 2006. A shallow-water whale-fall experiment in the north
Atlantic. Les Cahiers de Biologie Marine 47(4): 385-389.
II. Wiklund H, Glover AG, Johannessen PJ, Dahlgren TG. 2009.
Cryptic speciation at organic-rich marine habitats: a new bacteriovore
annelid from whale-fall and fish farms in the North East Atlantic.
Zoological Journal of the Linnean Society 155: 774-785.
III. Wiklund H, Glover AG, Dahlgren TG. In press. Three new
species of Ophryotrocha (Annelida: Dorvilleidae) from a whale-fall in
the North East Atlantic. Zootaxa.
IV. Wiklund H, Altamira I, Glover AG, Smith CR, Baco-Taylor A,
Dahlgren TG. Manuscript. Five new species of Ophryotrocha
(Annelida: Dorvilleidae) from whale-fall and sunken wood habitats
off California.

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/20788
http://www.science.gu.se/english/News/News_detail/New_species_discovered_on_whale_skeletons.cid891818

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>