Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New species discovered on whale skeletons

18.09.2009
When a whale dies, it sinks to the seafloor and becomes food for an entire ecosystem. Researchers at the University of Gothenburg, Sweden, have discovered previously unknown species that feed only on dead whales - and use DNA technology to show that the species diversity in our oceans may be higher than previously thought.

Dead whales constitute an unpredictable food source - it is impossible to know when and where a whale is going to die, and when it does, the food source does not last forever. Nevertheless, some marine species have specialised in feeding on whale cadavers.

Big source of nutrients

This is shown by researchers at the University of Gothenburg who have studied the ecosystem around dead whales using underwater cameras. A dead whale is an enormous source of nutrients. In fact, one cadaver offers the same amount of nutrients that normally sinks from the surface to the seafloor in 2000 years, and this is of great benefit to innumerable species: First the meat is eaten by for example sharks and hagfish, then tremendous amounts of various organisms come to feast on the skeleton.

Specialised worms

One group of animals commonly found on whale skeletons is bristleworms, which are related to the earthworm. Some bristleworm species are so specialised in eating dead whales they would have problems surviving elsewhere. One example is Osedax, which uses its root system to penetrate the whale bones when searching for food. Other species specialise in eating the thick layers of bacteria that quickly form around the bones.

Nine new species

A dissertation from the Department of Zoology at the University of Gothenburg describes no fewer than nine previously unknown species of these bacteria-grazing bristleworms.

Cryptic species

Four of the new species were found on whale cadavers placed at a depth of 125 metres in the new national park Kosterhavet off the coast of Strömstad, Sweden. The other five species feed on whale bones in the deep waters off the coast of California, USA. The family tree of bristleworms was explored using molecular data. The DNA analyses show that there are several so-called cryptic bristleworm species, meaning species that despite looking identical differ very much genetically.

Significant findings

The analyses show that the adaptation to a life on whale cadavers has occurred in species from different evolutionary paths and at several points in time. The study also shows that some species that are assumed to inhabit many different areas globally, so-called cosmopolitan species, may in fact be cryptic species. This finding may be very significant for our understanding of how animals spread around the world and of how many different species dwell on our planet.

The dissertation Evolution of annelid diversity at whale-falls and other marine ephemeral habitats will be publicly defended on 25 September.

Contact:Helena Wiklund, Department of Zoology, University of Gothenburg

This thesis is supported by the following papers:
I. Dahlgren TG, Wiklund H, Källström B, Lundälv T, Smith CR,
Glover AG. 2006. A shallow-water whale-fall experiment in the north
Atlantic. Les Cahiers de Biologie Marine 47(4): 385-389.
II. Wiklund H, Glover AG, Johannessen PJ, Dahlgren TG. 2009.
Cryptic speciation at organic-rich marine habitats: a new bacteriovore
annelid from whale-fall and fish farms in the North East Atlantic.
Zoological Journal of the Linnean Society 155: 774-785.
III. Wiklund H, Glover AG, Dahlgren TG. In press. Three new
species of Ophryotrocha (Annelida: Dorvilleidae) from a whale-fall in
the North East Atlantic. Zootaxa.
IV. Wiklund H, Altamira I, Glover AG, Smith CR, Baco-Taylor A,
Dahlgren TG. Manuscript. Five new species of Ophryotrocha
(Annelida: Dorvilleidae) from whale-fall and sunken wood habitats
off California.

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/20788
http://www.science.gu.se/english/News/News_detail/New_species_discovered_on_whale_skeletons.cid891818

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>