Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Specialized seeds can really float your boat

04.07.2011
A new artificial surface inspired by floating seeds, which could provide an alternative to the toxic paints currently used to prevent fouling on ship hulls, has been developed by German scientists.

Scientists from the Biomimetics-Innovation-Centre have developed a new anti-fouling surface based on a seed from a species of palm tree. "These plants have seeds which are dispersed by the ocean currents. As it is an advantage for these seeds to remain free of fouling to allow them to disperse further, we guessed they might have specialised surfaces we could mimic," explains Katrin Mühlenbruch, a PhD researcher who is presenting this work at the Society for Experimental Biology Annual Conference in Glasgow on the 4th of July 2011.

The researchers floated seeds from 50 species in the North Sea for 12 weeks. The seeds of 12 species showed no fouling at all. "We then began by examining the micro-structure of the seeds' surfaces, to see if we could translate them into an artificial surface. The seeds we chose to mimic had a hairy-like structure," says Ms. Mühlenbruch. "This structure might be especially good at preventing fouling because the fibres constantly move, preventing marine organisms from finding a place to settle."

Using a silicone base the scientists created an artificial surface similar to the seeds, with fibres covering the surface. Currently the new surface is being trialled by floating it in the sea. "Initial results are quite good," says Ms. Mühlenbruch. "But we still have a long way to go"

Fouling by seaweeds and marine animals is a problem for the shipping industry, resulting in increased fuel costs. Currently the only solutions are highly toxic and environmentally damaging marine paints which are specifically designed to leach biocides to prevent organisms settling on the hull. "Our aim is to provide a new toxin-free and bio-inspired ship coating," says Ms. Mühlenbruch. "This would prevent environmental damage while allowing ships to operate efficiently."

Future work will include analysing the chemical composition of the seeds' surface, to find out whether this adds to their anti-fouling properties.

Daisy Brickhill | EurekAlert!
Further information:
http://www.sebiology.org/

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>