Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Specialized seeds can really float your boat

04.07.2011
A new artificial surface inspired by floating seeds, which could provide an alternative to the toxic paints currently used to prevent fouling on ship hulls, has been developed by German scientists.

Scientists from the Biomimetics-Innovation-Centre have developed a new anti-fouling surface based on a seed from a species of palm tree. "These plants have seeds which are dispersed by the ocean currents. As it is an advantage for these seeds to remain free of fouling to allow them to disperse further, we guessed they might have specialised surfaces we could mimic," explains Katrin Mühlenbruch, a PhD researcher who is presenting this work at the Society for Experimental Biology Annual Conference in Glasgow on the 4th of July 2011.

The researchers floated seeds from 50 species in the North Sea for 12 weeks. The seeds of 12 species showed no fouling at all. "We then began by examining the micro-structure of the seeds' surfaces, to see if we could translate them into an artificial surface. The seeds we chose to mimic had a hairy-like structure," says Ms. Mühlenbruch. "This structure might be especially good at preventing fouling because the fibres constantly move, preventing marine organisms from finding a place to settle."

Using a silicone base the scientists created an artificial surface similar to the seeds, with fibres covering the surface. Currently the new surface is being trialled by floating it in the sea. "Initial results are quite good," says Ms. Mühlenbruch. "But we still have a long way to go"

Fouling by seaweeds and marine animals is a problem for the shipping industry, resulting in increased fuel costs. Currently the only solutions are highly toxic and environmentally damaging marine paints which are specifically designed to leach biocides to prevent organisms settling on the hull. "Our aim is to provide a new toxin-free and bio-inspired ship coating," says Ms. Mühlenbruch. "This would prevent environmental damage while allowing ships to operate efficiently."

Future work will include analysing the chemical composition of the seeds' surface, to find out whether this adds to their anti-fouling properties.

Daisy Brickhill | EurekAlert!
Further information:
http://www.sebiology.org/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>