Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some long non-coding RNAs are conventional after all

07.04.2014

Not so long ago researchers thought that RNAs came in two types: coding RNAs that make proteins and non-coding RNAs that have structural roles.

Then came the discovery of small RNAs that opened up whole new areas of research. Now researchers have come full circle and predicted that some long non-coding RNAs can give rise to small proteins that have biological functions. A recent study in The EMBO Journal describes how researchers have used ribosome profiling to identify several hundred long non-coding RNAs that may give rise to small peptides.


Some long non-coding RNAs are conventional after all

“We have identified hundreds of open reading frames in the long non-coding RNAs of humans and zebrafish that may give rise to functional proteins using ribosome profiling,” says Antonio Giraldez, one of the lead authors of the study and a professor at Yale University School of Medicine in the United States.

Ribosome profiling allows scientists to measure how much RNA is translated into protein. The method allows direct quantification of the messenger RNA fragments protected by the ribosome after digestion with the enzyme nuclease. The nucleases destroy the bonds between the exposed nucleotides that make up RNA and which are not protected by the protein-making machinery of the ribosome. What is left behind is a measurable amount of RNA destined to produce protein.

The researchers were able to visualize translation and the movement of the ribosome every three nucleotides, which corresponds to the size of each codon on the RNA producing an amino acid. This was possible by combining the high resolution of ribosome profiling with a bioinformatic tool developed in the Giraldez laboratory called ORFScore.

“Crucial to our study was the parallel use of a second computational method that relies on a bioinformatic tool called micPDP,” says Giraldez. “micPDP revealed that the RNAs identified by ribosome profiling correspond to peptides that have been conserved over the course of evolution. This strongly suggests that these genes encode proteins that have specific functions in these animals.”

As a further validation of their method, the scientists went one step further and used mass spectrometry to detect and characterize almost 100 of the peptides coded by the RNAs.

Until recently, long non-coding RNAs were thought to be restricted to the more mundane but nonetheless important structural roles that are essential to support the function of the cell. “We think the main reason that these small functional peptides have been missed in earlier studies is due to the assumptions that have to be made when assigning functions to large numbers of genes,” says EMBO Member Nikolaus Rajewsky, Professor at the Max-Delbrück-Center in Berlin, Germany, Director of the Berlin Institute for Medical Systems Biology and one of the lead authors whose team contributed the micPDP computational method to identify conserved micropeptides. “Short open reading frames are so numerous that by design standard genome annotation methods have to filter out short open reading frames.”

There are many short peptides in nature, for example neuropeptides or insulin, but unlike the small peptides arising from long non-coding RNAs they are produced as larger preproteins that need to be trimmed to their final size. The first reports of activities for the small peptides produced by long non-coding RNAs have already begun to emerge. Schier and colleagues recently reported in Science1 a small peptide that functions as a signal to promote cell motility in the early fish embryo. The aptly named Toddler protein arises from long non-coding RNAs and acts as an activator of a G protein coupled receptor, one of the essential signaling molecules in the cell. Earlier work showed that a long non-coding RNA produced by the tarsal-less/polished rice/mille-pattes gene encodes small peptides that control epithelial morphogenesis in Drosophila and the flour beetle Tribolium.

“Our identification of hundreds of translated small open reading frames significantly expands the set of micropeptide-encoding vertebrate genes providing an entry point to investigate their real life functions,” says Giraldez.

“The peptide predictions reported in these studies are tantalizing, but this is just the first step. Things should get really interesting as the community explores the functions of the predicted peptides in vivo,” says Stephen M. Cohen, Professor at the Institute of Molecular and Cell Biology in Singapore who is not an author of the paper. “I imagine that we’ll be hearing a lot about this new peptide world in the years to come.”
Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation

Ariel A. Bazzini, Timothy G. Johnstone, Romain Christiano, Sebastian D.
Mackowiak, Benedikt Obermayer, Elizabeth S. Fleming,Charles E. Vejnar, Miler T. Lee, Nikolaus Rajewsky, Tobias C. Walther and Antonio J. Giraldez

Read the paper:
doi: 10.1002/embj.201488411

http://emboj.embopress.org/content/early/2014/04/04/embj.201488411

1 Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin Receptors (2014) Pauli et al. Science 14 February 2014: 343 doi:10.1126/science.1248636

Further information on The EMBO Journal is available at emboj.embopress.org

Media Contacts

Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org

Thomas Schwarz-Romand
Senior Editor, The EMBO Journal
Tel: +49 6221 8891 407
schwarzr@embo.org

About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.
For more information: www.embo.org

Yvonne Kaul | EMBO

Further reports about: EMBO RNA RNAs conventional genes identified non-coding nucleotides peptides profiling proteins ribosome rise small

More articles from Life Sciences:

nachricht About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed
10.02.2016 | Universität Ulm

nachricht Chemical cages: New technique advances synthetic biology
10.02.2016 | Arizona State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>