Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving An Evolutionary Puzzle

13.02.2014
New Bedford Harbor Pollution Prompts PCB-Resistance in Atlantic Killifish

For four decades, waste from nearby manufacturing plants flowed into the waters of New Bedford Harbor—an 18,000-acre estuary and busy seaport. The harbor, which is contaminated with polychlorinated biphenyls (PCBs) and heavy metals, is one of the EPA’s largest Superfund cleanup sites.


In a new paper published in BMC Evolutionary Biology, researchers found that changes in a receptor protein, called the aryl hydrocarbon receptor 2 (AHR2), may explain how killifish in New Bedford Harbor evolved genetic resistance to PCBs.
(Courtesy of Evan D'Alessandro, Rosenstiel School of Marine and Atmospheric Science)

It’s also the site of an evolutionary puzzle that researchers at Woods Hole Oceanographic Institution (WHOI) and their colleagues have been working to solve.

Atlantic killifish—common estuarine fishes about three inches long—are not only tolerating the toxic conditions in the harbor, they seem to be thriving there. How have they been able to adapt and live in such a highly contaminated environment?

In a new paper published in BMC Evolutionary Biology, researchers found that changes in a receptor protein, called the aryl hydrocarbon receptor 2 (AHR2), may explain how killifish in New Bedford Harbor evolved genetic resistance to PCBs.

Killifish are prey fish that do not migrate. They live their whole lives in the same area, generally within a few hundred yards of the spot where they were hatched. Unlike fish that may come in and out of the harbor sporadically during the summer months to feed, the killifish are there year round and spend winters burrowing into the contaminated sediment.

Normally when fish are exposed to harmful chemicals, the body steps up production of enzymes that break down the pollutants, a process controlled by the AHR2 protein. Some of the PCBs are not broken down in this way, and their continued stimulation of AHR2 disrupts cellular functions, leading to toxicity. In the New Bedford Harbor killifish, the AHR2 system has become resistant to this effect.

"The killifish have managed to shut down the pathway," said Mark Hahn, a biologist at WHOI and coauthor of the paper. "It’s an example of how some populations are able to adapt to changes in their environment—a snapshot of evolution at work."

The research team, which includes colleagues from the Atlantic Ecology Division of the U.S. Environmental Protection Agency, the Boston University School of Public Health, and the University of North Carolina at Charlotte, used a "candidate gene" approach, sequencing the protein-coding portion of three candidate resistance genes (AHR1, AHR2, AHRR) in fish from the New Bedford site and six other locations, both clean and polluted, along the northeast coast.

Looking for single nucleotide polymorphisms (SNPs) or subtle variations in the DNA sequence, they found differences in AHR2, which plays an important role in mediating toxicity in early life stages.

"The function of this receptor is what mediates the toxic effects," said Sibel Karchner, a coauthor and biologist in Hahn’s lab. "If you don’t have a functional receptor, then you’re not going to get the toxic effects as much as a fish that does."

AHR2 in killifish has 951 amino acids and nine of those vary among individuals. The different combinations of amino acid variants lead to 26 different forms of the protein.

"We see that the pattern of variants present in the New Bedford Harbor killifish is much different from the patterns at nearby sites, which is unexpected under normal circumstances," Hahn said. "There are a few protein variants that are common in New Bedford Harbor killifish, but uncommon elsewhere. Similarly, the protein variants that are most common at the nearby reference sites are much less common in the New Bedford Harbor killifish."

A companion paper published in BMC Evolutionary Biology by colleagues at the EPA lab in Narragansett, RI, that used a "candidate gene scan" approach—examining SNPs from 42 genes associated with the AHR pathway—also identified AHR2 as a gene that appears to be under selection and is likely to be involved in the resistance. The results suggest that evolution of resistance in independent populations of killifish converges on the same target gene.

"The results of these studies and the genetic tools developed in the course of these studies are helping to dissect how evolution occurs on a contemporary (rather than geological) scale and why some species are more likely to adapt to a rapidly changing world," said Diane Nacci, a research biologist at EPA and coauthor on both papers.

AHR2 is also the same gene identified in a 2011 Science paper by WHOI biologists and colleagues from New York University and NOAA on PCB-resistant tomcod from the Hudson River. AHR2 proteins in the Hudson River tomcod are missing two of the 1,104 amino acids normally found in this protein.

"Even though the specific molecular changes that are found in PCB-resistant tomcod and killifish are different, in both species AHR2 seems to be one of the genes—possibly the major gene—that is responsible for the resistance," Hahn said.

While the killifish themselves seem to be immune to the toxic effects of the PCBs, they can still transfer contaminants up the food chain. They’re a major source of food for bluefish, striped bass and other fish eaten by humans.

Despite their healthy appearance, there could be unknown negative costs for the New Bedford Harbor killifish associated with the resistance to PCBs. Researchers will look next at whether the adaptation affects how the killifish are able to respond to other kinds of stressors in their environment, such as low oxygen levels.

"Obviously, the fact that they are resistant to PCBs allows them to survive in this really polluted environment, but what will happen once the harbor gets cleaned up? There could be costs that make it no longer adaptive for these fish to live there," Hahn said.

"It’s a fascinating example of how human activities can drive evolution," he added. "The ability to adapt to changing conditions is going to become even more important as humans impact the environment, whether it’s from ocean acidification or increasing temperatures or other types of global changes that are occurring."

In addition to Hahn and Karchner, WHOI researchers involved in the work included lead author Adam Reitzel (now an Assistant Professor at the University of North Carolina at Charlotte) and Diana Franks. This work was supported by the National Insitute of Environmental Health Sciences through the Superfund Research Program at Boston University, the Hudson River Foundation, and a National Science Foundation grant.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Originally published: February 12, 2014

Media Relations Office | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Life Sciences:

nachricht MACC1 Gene Is an Independent Prognostic Biomarker for Survival in Klatskin Tumor Patients
31.08.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Production research by Fraunhofer IAO honored with three awards at the ICPR 2015

31.08.2015 | Awards Funding

Single-Crystal Phosphors Suitable for Ultra-Bright, High-Power White Light Sources

31.08.2015 | Materials Sciences

Manchester Team Reveal New, Stable 2D Materials

31.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>