Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smokers could be more prone to schizophrenia

27.03.2012
Smoking alters the impact of a schizophrenia risk gene. Scientists from the universities of Zurich and Cologne demonstrate that healthy people who carry this risk gene and smoke process acoustic stimuli in a similarly deficient way as patients with schizophrenia. Furthermore, the impact is all the stronger the more the person smokes.

Schizophrenia has long been known to be hereditary. However, as a melting pot of disorders with different genetic causes is concealed behind manifestations of schizophrenia, research has still not been able to identify the main gene responsible to this day.

In order to study the genetic background of schizophrenia, the frequency of particular risk genes between healthy and ill people has mostly been compared until now. Pharmacopyschologist Professor Boris Quednow from University Hospital of Psychiatry, Zurich, and Professor Georg Winterer’s workgroup at the University of Cologne have now adopted a novel approach. Using electroencephalography (EEG), the scientists studied the processing of simple acoustic stimuli (a sequence of similar clicks). When processing a particular stimulus, healthy people suppress the processing of other stimuli that are irrelevant to the task at hand. Patients with schizophrenia exhibit deficits in this kind of stimulus filtering and thus their brains are probably inundated with too much information. As psychiatrically healthy people also filter stimuli with varying degrees of efficiency, individual stimulus processing can be associated with particular genes.

Smokers process stimuli less effectively
In a large-scale study involving over 1,800 healthy participants from the general population, Boris Quednow and Georg Winterer examined how far acoustic stimulus filtering is connected with a known risk gene for schizophrenia: the so-called “transcription factor 4” gene (TCF4). TCF4 is a protein that plays a key role in early brain development. As patients with schizophrenia often smoke, the scientists also studied the smoking habits of the test subjects.

The data collected shows that psychiatrically healthy carriers of the TCF4 gene also filter stimuli less effectively – like people who suffer from schizophrenia. It turned out that primarily smokers who carry the risk gene display a less effective filtering of acoustic impressions. This effect was all the more pronounced the more the people smoked. Non-smoking carriers of the risk gene, however, did not process stimuli much worse. “Smoking alters the impact of the TCF4 gene on acoustic stimulus filtering,” says Boris Quednow, explaining this kind of gene-environment interaction. “Therefore, smoking might also increase the impact of particular genes on the risk of schizophrenia.” The results could also be significant for predicting schizophrenic disorders and for new treatment approaches, says Quednow and concludes: “Smoking should also be considered as an important cofactor for the risk of schizophrenia in future studies.” A combination of genetic (e.g. TCF4), electrophysiological (stimulus filtering) and demographic (smoking) factors could help diagnose the disorder more rapidly or also define new, genetically more uniform patient subgroups.

Literature:
Boris B. Quednow et al. Schizophrenia risk polymorphisms in the TCF4 gene interact with smoking in the modulation of auditory sensory gating. In: PNAS, March 26, 2012. DOI: 10.1073/pnas.1118051109
About the study
The university psychiatric hospitals of Aachen, Charité Berlin, Bonn, Düsseldorf, Erlangen, Mainz and Mannheim participated in the multi-centric study. The study was funded by the Deutschen Forschungsgemeinschaft (German Research Foundation) as part of the priority program Nicotine: Molecular and Physiological Effects in Central Nervous System (CNS) (SPP1226, WI1316/9-1).
Contact:
Prof. Dr. Boris B. Quednow
Experimental and Clinical Pharmacopsychology
University Hospital of Psychiatry, Zurich
Tel.: +41 44 384 27 77
Email: quednow@bli.uzh.ch

Nathalie Huber | idw
Further information:
http://www.mediadesk.uzh.ch/

Further reports about: Cologne Psychiatry Smokers TCF4 acoustic stimulus schizophrenia

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>