Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smokers could be more prone to schizophrenia

27.03.2012
Smoking alters the impact of a schizophrenia risk gene. Scientists from the universities of Zurich and Cologne demonstrate that healthy people who carry this risk gene and smoke process acoustic stimuli in a similarly deficient way as patients with schizophrenia. Furthermore, the impact is all the stronger the more the person smokes.

Schizophrenia has long been known to be hereditary. However, as a melting pot of disorders with different genetic causes is concealed behind manifestations of schizophrenia, research has still not been able to identify the main gene responsible to this day.

In order to study the genetic background of schizophrenia, the frequency of particular risk genes between healthy and ill people has mostly been compared until now. Pharmacopyschologist Professor Boris Quednow from University Hospital of Psychiatry, Zurich, and Professor Georg Winterer’s workgroup at the University of Cologne have now adopted a novel approach. Using electroencephalography (EEG), the scientists studied the processing of simple acoustic stimuli (a sequence of similar clicks). When processing a particular stimulus, healthy people suppress the processing of other stimuli that are irrelevant to the task at hand. Patients with schizophrenia exhibit deficits in this kind of stimulus filtering and thus their brains are probably inundated with too much information. As psychiatrically healthy people also filter stimuli with varying degrees of efficiency, individual stimulus processing can be associated with particular genes.

Smokers process stimuli less effectively
In a large-scale study involving over 1,800 healthy participants from the general population, Boris Quednow and Georg Winterer examined how far acoustic stimulus filtering is connected with a known risk gene for schizophrenia: the so-called “transcription factor 4” gene (TCF4). TCF4 is a protein that plays a key role in early brain development. As patients with schizophrenia often smoke, the scientists also studied the smoking habits of the test subjects.

The data collected shows that psychiatrically healthy carriers of the TCF4 gene also filter stimuli less effectively – like people who suffer from schizophrenia. It turned out that primarily smokers who carry the risk gene display a less effective filtering of acoustic impressions. This effect was all the more pronounced the more the people smoked. Non-smoking carriers of the risk gene, however, did not process stimuli much worse. “Smoking alters the impact of the TCF4 gene on acoustic stimulus filtering,” says Boris Quednow, explaining this kind of gene-environment interaction. “Therefore, smoking might also increase the impact of particular genes on the risk of schizophrenia.” The results could also be significant for predicting schizophrenic disorders and for new treatment approaches, says Quednow and concludes: “Smoking should also be considered as an important cofactor for the risk of schizophrenia in future studies.” A combination of genetic (e.g. TCF4), electrophysiological (stimulus filtering) and demographic (smoking) factors could help diagnose the disorder more rapidly or also define new, genetically more uniform patient subgroups.

Literature:
Boris B. Quednow et al. Schizophrenia risk polymorphisms in the TCF4 gene interact with smoking in the modulation of auditory sensory gating. In: PNAS, March 26, 2012. DOI: 10.1073/pnas.1118051109
About the study
The university psychiatric hospitals of Aachen, Charité Berlin, Bonn, Düsseldorf, Erlangen, Mainz and Mannheim participated in the multi-centric study. The study was funded by the Deutschen Forschungsgemeinschaft (German Research Foundation) as part of the priority program Nicotine: Molecular and Physiological Effects in Central Nervous System (CNS) (SPP1226, WI1316/9-1).
Contact:
Prof. Dr. Boris B. Quednow
Experimental and Clinical Pharmacopsychology
University Hospital of Psychiatry, Zurich
Tel.: +41 44 384 27 77
Email: quednow@bli.uzh.ch

Nathalie Huber | idw
Further information:
http://www.mediadesk.uzh.ch/

Further reports about: Cologne Psychiatry Smokers TCF4 acoustic stimulus schizophrenia

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>