Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smokers could be more prone to schizophrenia

Smoking alters the impact of a schizophrenia risk gene. Scientists from the universities of Zurich and Cologne demonstrate that healthy people who carry this risk gene and smoke process acoustic stimuli in a similarly deficient way as patients with schizophrenia. Furthermore, the impact is all the stronger the more the person smokes.

Schizophrenia has long been known to be hereditary. However, as a melting pot of disorders with different genetic causes is concealed behind manifestations of schizophrenia, research has still not been able to identify the main gene responsible to this day.

In order to study the genetic background of schizophrenia, the frequency of particular risk genes between healthy and ill people has mostly been compared until now. Pharmacopyschologist Professor Boris Quednow from University Hospital of Psychiatry, Zurich, and Professor Georg Winterer’s workgroup at the University of Cologne have now adopted a novel approach. Using electroencephalography (EEG), the scientists studied the processing of simple acoustic stimuli (a sequence of similar clicks). When processing a particular stimulus, healthy people suppress the processing of other stimuli that are irrelevant to the task at hand. Patients with schizophrenia exhibit deficits in this kind of stimulus filtering and thus their brains are probably inundated with too much information. As psychiatrically healthy people also filter stimuli with varying degrees of efficiency, individual stimulus processing can be associated with particular genes.

Smokers process stimuli less effectively
In a large-scale study involving over 1,800 healthy participants from the general population, Boris Quednow and Georg Winterer examined how far acoustic stimulus filtering is connected with a known risk gene for schizophrenia: the so-called “transcription factor 4” gene (TCF4). TCF4 is a protein that plays a key role in early brain development. As patients with schizophrenia often smoke, the scientists also studied the smoking habits of the test subjects.

The data collected shows that psychiatrically healthy carriers of the TCF4 gene also filter stimuli less effectively – like people who suffer from schizophrenia. It turned out that primarily smokers who carry the risk gene display a less effective filtering of acoustic impressions. This effect was all the more pronounced the more the people smoked. Non-smoking carriers of the risk gene, however, did not process stimuli much worse. “Smoking alters the impact of the TCF4 gene on acoustic stimulus filtering,” says Boris Quednow, explaining this kind of gene-environment interaction. “Therefore, smoking might also increase the impact of particular genes on the risk of schizophrenia.” The results could also be significant for predicting schizophrenic disorders and for new treatment approaches, says Quednow and concludes: “Smoking should also be considered as an important cofactor for the risk of schizophrenia in future studies.” A combination of genetic (e.g. TCF4), electrophysiological (stimulus filtering) and demographic (smoking) factors could help diagnose the disorder more rapidly or also define new, genetically more uniform patient subgroups.

Boris B. Quednow et al. Schizophrenia risk polymorphisms in the TCF4 gene interact with smoking in the modulation of auditory sensory gating. In: PNAS, March 26, 2012. DOI: 10.1073/pnas.1118051109
About the study
The university psychiatric hospitals of Aachen, Charité Berlin, Bonn, Düsseldorf, Erlangen, Mainz and Mannheim participated in the multi-centric study. The study was funded by the Deutschen Forschungsgemeinschaft (German Research Foundation) as part of the priority program Nicotine: Molecular and Physiological Effects in Central Nervous System (CNS) (SPP1226, WI1316/9-1).
Prof. Dr. Boris B. Quednow
Experimental and Clinical Pharmacopsychology
University Hospital of Psychiatry, Zurich
Tel.: +41 44 384 27 77

Nathalie Huber | idw
Further information:

Further reports about: Cologne Psychiatry Smokers TCF4 acoustic stimulus schizophrenia

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>