Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smallest and fastest-known RNA switches provide new drug targets

08.10.2012
A University of Michigan biophysical chemist and his colleagues have discovered the smallest and fastest-known molecular switches made of RNA, the chemical cousin of DNA. The researchers say these rare, fleeting structures are prime targets for the development of new antiviral and antibiotic drugs.

Once believed to merely store and relay genetic information, RNA is now known to be a cellular Swiss Army knife of sorts, performing a wide variety of tasks and morphing into myriad shapes.

Over the past decade, researchers have determined that most of the DNA in our cells is used to make RNA molecules, that RNA plays a central role in regulating gene expression, and that these macromolecules act as switches that detect cellular signals and then change shape to send an appropriate response to other biomolecules in the cell.

While RNA's switching function has been well-documented, Hashim Al-Hashimi and his U-M colleagues report online Oct. 7 in the journal Nature a new class of switches that are significantly smaller and orders of magnitude faster than the other known class of RNA switches.

Al-Hashimi calls these short-lived structures, which were detected using a new imaging technique developed in his laboratory, micro-switches.

"We're finally able to zoom in on these rare, alternative forms of RNA that exist for just a split second and then are gone," said Al-Hashimi, the Robert L. Kuczkowski Professor of Chemistry and Biophysics. "These things are so difficult to see because they exist for roughly 1 percent of the time and for only a microsecond to a millisecond."

In biology, a molecule's three-dimensional shape determines its properties and affects its function. RNA molecules are made of single chains that can remain stretched out as long threads or fold into complex loops with branching, ladder-like arms.

The micro-switches described by the U-M researchers involve temporary, localized changes of RNA structure into alternative forms called excited states. The structural change is the switch: the shape shift transmits biological signals to other parts of the cell.

"These excited states correspond to rare alternative forms that have biological functions," Al-Hashimi said. "These alternative forms have unique architectural and chemical features that could make them great molecules for drugs to latch onto. In some sense, they provide a whole new layer of drug targets."

In their Nature report, the U-M researchers looked at transient structural changes in three types of RNA molecules. Two of the RNAs came from the HIV virus that causes AIDS and are known to play a key role in viral replication. The third is involved in quality control inside the ribosome, the cellular machine that assembles proteins.

The newly found excited states of all three of these RNAS provide potential targets for drug development: antiviral drugs that would disrupt HIV replication and antibiotics that would interfere with protein assembly in bacterial ribosomes.

Evidence for the existence of these tiny RNA switches has been mounting for years. But until now, they're evaded detection because they are simply too small and too short-lived to be captured by conventional imaging techniques, Al-Hashimi said.

To make their discovery, the team used a modified form of nuclear magnetic resonance spectroscopy, along with a strategy for trapping and capturing the transient RNA structures. In a finding reported last year in Nature, the researchers used similar NMR techniques to catch the rare instances when bases in the DNA double helix roll back and forth.

In recent years, Al-Hashimi and his co-workers have also used NMR to create "nanovideos" that revealed in three dimensions how RNA molecules change shape—twisting, bending and rotating about their structural joints.

In addition to Al-Hashimi, authors of the Nature report are U-M's Elizabeth Dethoff, Katja Petzold, Jeetender Chugh and Anette Casiano-Negroni. Al-Hashimi is an adviser to, and holds an ownership interest in, Nymirum Inc., an RNA-based drug discovery company in Ann Arbor.

The research was supported by the National Institutes of Health and by a Rackham Graduate Student Research Grant awarded by the University of Michigan. The authors of the Nature paper acknowledge the Michigan Economic Development Cooperation and the Michigan Technology Tri-Corridor for the support of the purchase of a 600 MHz spectrometer used in the study.

Al-Hashimi research group: http://hashimi.biop.lsa.umich.edu

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>