Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Small molecule shows promise as anti-cancer therapy

Johns Hopkins scientists say a previously known but little studied chemical compound targets and shuts down a common cancer process. In studies of laboratory-grown human tumor cell lines, the drug disrupted tumor cell division and prevented growth of advanced cancer cells.

In a study described in the January 13 issue of Cancer-Cell, Marikki Laiho, M.D., Ph.D., and her colleagues say their work focused on the ability of a chemical dubbed BMH-21 to sabotage the transcription pathway RNA Polymerase pathway (POL I), shutting down the ability of mutant cancer genes to communicate with cells and replicate.

Laiho's research linked the pathway to p53 gene activity. P53 is a tumor suppressor gene, a protein that regulates cell growth, and it is the most frequently mutated suppressor gene in cancer.

Transcription pathways are the means by which certain proteins that direct cell division are put into action by cells. Uncontrolled cell division is a hallmark of cancer, and BMH-21 has demonstrated an ability to bind to the DNA of cancer cells and completely shut down this transcription pathway.

"Without this transcription machinery, cancer cells cannot function," says Marikki Laiho, M.D., Ph.D., professor of Radiation Oncology and Molecular Radiation Sciences at Johns Hopkins and senior author on the study.

Laiho said BMH-21 was identified using by screening a library of chemical compounds known to have potential for anticancer activity based on their chemical structure and capabilities. Specifically, they looked for the ability of those compounds to interfere with transcription in human tumor cells obtained through the National Cancer Institute's collection of 60 human tumor cell lines of nine different cancer types, including melanoma and colon cancer.

BMH-21 first jumped out, Laiho said, demonstrating potent action against melanoma and colon cancer cells. In fact, in these studies, the drug functioned better in upsetting these cancer cells' activities than many FDA-approved cancer drugs.

BMH-21 also appears to overcome the tendency of cancer cells to resist chemotherapeutic agents because it finds and targets proteins and shuts down the communication pathways that cells use to continue dividing.

"One of the challenges of current cancer therapies, including new targeted therapies, is a cancer cell's ability to overcome a treatment's anticancer properties. The characteristics of a cancer cell and its circuitry is very complex and results in many changes and mutations that allow the cells to continue to thrive despite cancer treatments," said Laiho.

While the findings with BMH-21 are promising, Laiho cautions much more study of the compound is needed before it would be ready for studies in patients. She and her team are continuing studies of the drug in animal models to further reveal the drug's potential against cancer and possible toxicities, and to determine dosage.

The transcription machinery the compound shuts down is common among all cancer cell types, so the researchers believe it has therapeutic potential across many tumor types.

Laiho is currently collaborating with Kimmel Cancer Center drug development experts as well as multiple myeloma blood cancer, medullary thyroid cancer, and prostate cancer experts to further explore the drug's cancer-fighting abilities. She also is collaborating with investigators at a laboratory in Helsinki, Finland, where she maintains an affiliation.

In addition to Laiho, other members of the research team include Karita Peltonen, Laureen Colis, Hester Liu, Rishi Trivedi, Michael S. Moubarek, Henna M. Moore, Bayoan Bai, Michelle Rudek, and Charles J. Bieberich.

The research was supported by the Academy of Finland, Biomedicum Helsinki Foundation, Cancer Society Finland, Finnish Cultural Foundation, Patrick C. Walsh Cancer Research Fund, the National Institutes of Health, Johns Hopkins University start-up funds, and the Analytical Pharmacology Core of the Johns Hopkins Kimmel Cancer Center.

Amy Mone | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>