Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecule shows promise as anti-cancer therapy

14.01.2014
Johns Hopkins scientists say a previously known but little studied chemical compound targets and shuts down a common cancer process. In studies of laboratory-grown human tumor cell lines, the drug disrupted tumor cell division and prevented growth of advanced cancer cells.

In a study described in the January 13 issue of Cancer-Cell, Marikki Laiho, M.D., Ph.D., and her colleagues say their work focused on the ability of a chemical dubbed BMH-21 to sabotage the transcription pathway RNA Polymerase pathway (POL I), shutting down the ability of mutant cancer genes to communicate with cells and replicate.

Laiho's research linked the pathway to p53 gene activity. P53 is a tumor suppressor gene, a protein that regulates cell growth, and it is the most frequently mutated suppressor gene in cancer.

Transcription pathways are the means by which certain proteins that direct cell division are put into action by cells. Uncontrolled cell division is a hallmark of cancer, and BMH-21 has demonstrated an ability to bind to the DNA of cancer cells and completely shut down this transcription pathway.

"Without this transcription machinery, cancer cells cannot function," says Marikki Laiho, M.D., Ph.D., professor of Radiation Oncology and Molecular Radiation Sciences at Johns Hopkins and senior author on the study.

Laiho said BMH-21 was identified using by screening a library of chemical compounds known to have potential for anticancer activity based on their chemical structure and capabilities. Specifically, they looked for the ability of those compounds to interfere with transcription in human tumor cells obtained through the National Cancer Institute's collection of 60 human tumor cell lines of nine different cancer types, including melanoma and colon cancer.

BMH-21 first jumped out, Laiho said, demonstrating potent action against melanoma and colon cancer cells. In fact, in these studies, the drug functioned better in upsetting these cancer cells' activities than many FDA-approved cancer drugs.

BMH-21 also appears to overcome the tendency of cancer cells to resist chemotherapeutic agents because it finds and targets proteins and shuts down the communication pathways that cells use to continue dividing.

"One of the challenges of current cancer therapies, including new targeted therapies, is a cancer cell's ability to overcome a treatment's anticancer properties. The characteristics of a cancer cell and its circuitry is very complex and results in many changes and mutations that allow the cells to continue to thrive despite cancer treatments," said Laiho.

While the findings with BMH-21 are promising, Laiho cautions much more study of the compound is needed before it would be ready for studies in patients. She and her team are continuing studies of the drug in animal models to further reveal the drug's potential against cancer and possible toxicities, and to determine dosage.

The transcription machinery the compound shuts down is common among all cancer cell types, so the researchers believe it has therapeutic potential across many tumor types.

Laiho is currently collaborating with Kimmel Cancer Center drug development experts as well as multiple myeloma blood cancer, medullary thyroid cancer, and prostate cancer experts to further explore the drug's cancer-fighting abilities. She also is collaborating with investigators at a laboratory in Helsinki, Finland, where she maintains an affiliation.

In addition to Laiho, other members of the research team include Karita Peltonen, Laureen Colis, Hester Liu, Rishi Trivedi, Michael S. Moubarek, Henna M. Moore, Bayoan Bai, Michelle Rudek, and Charles J. Bieberich.

The research was supported by the Academy of Finland, Biomedicum Helsinki Foundation, Cancer Society Finland, Finnish Cultural Foundation, Patrick C. Walsh Cancer Research Fund, the National Institutes of Health, Johns Hopkins University start-up funds, and the Analytical Pharmacology Core of the Johns Hopkins Kimmel Cancer Center.

Amy Mone | EurekAlert!
Further information:
http://www.hopkinscancer.org
http://www.hopkinsmedicine.org/radiation_oncology/
http://www.jhmi.edu

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>