Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecule shows promise as anti-cancer therapy

14.01.2014
Johns Hopkins scientists say a previously known but little studied chemical compound targets and shuts down a common cancer process. In studies of laboratory-grown human tumor cell lines, the drug disrupted tumor cell division and prevented growth of advanced cancer cells.

In a study described in the January 13 issue of Cancer-Cell, Marikki Laiho, M.D., Ph.D., and her colleagues say their work focused on the ability of a chemical dubbed BMH-21 to sabotage the transcription pathway RNA Polymerase pathway (POL I), shutting down the ability of mutant cancer genes to communicate with cells and replicate.

Laiho's research linked the pathway to p53 gene activity. P53 is a tumor suppressor gene, a protein that regulates cell growth, and it is the most frequently mutated suppressor gene in cancer.

Transcription pathways are the means by which certain proteins that direct cell division are put into action by cells. Uncontrolled cell division is a hallmark of cancer, and BMH-21 has demonstrated an ability to bind to the DNA of cancer cells and completely shut down this transcription pathway.

"Without this transcription machinery, cancer cells cannot function," says Marikki Laiho, M.D., Ph.D., professor of Radiation Oncology and Molecular Radiation Sciences at Johns Hopkins and senior author on the study.

Laiho said BMH-21 was identified using by screening a library of chemical compounds known to have potential for anticancer activity based on their chemical structure and capabilities. Specifically, they looked for the ability of those compounds to interfere with transcription in human tumor cells obtained through the National Cancer Institute's collection of 60 human tumor cell lines of nine different cancer types, including melanoma and colon cancer.

BMH-21 first jumped out, Laiho said, demonstrating potent action against melanoma and colon cancer cells. In fact, in these studies, the drug functioned better in upsetting these cancer cells' activities than many FDA-approved cancer drugs.

BMH-21 also appears to overcome the tendency of cancer cells to resist chemotherapeutic agents because it finds and targets proteins and shuts down the communication pathways that cells use to continue dividing.

"One of the challenges of current cancer therapies, including new targeted therapies, is a cancer cell's ability to overcome a treatment's anticancer properties. The characteristics of a cancer cell and its circuitry is very complex and results in many changes and mutations that allow the cells to continue to thrive despite cancer treatments," said Laiho.

While the findings with BMH-21 are promising, Laiho cautions much more study of the compound is needed before it would be ready for studies in patients. She and her team are continuing studies of the drug in animal models to further reveal the drug's potential against cancer and possible toxicities, and to determine dosage.

The transcription machinery the compound shuts down is common among all cancer cell types, so the researchers believe it has therapeutic potential across many tumor types.

Laiho is currently collaborating with Kimmel Cancer Center drug development experts as well as multiple myeloma blood cancer, medullary thyroid cancer, and prostate cancer experts to further explore the drug's cancer-fighting abilities. She also is collaborating with investigators at a laboratory in Helsinki, Finland, where she maintains an affiliation.

In addition to Laiho, other members of the research team include Karita Peltonen, Laureen Colis, Hester Liu, Rishi Trivedi, Michael S. Moubarek, Henna M. Moore, Bayoan Bai, Michelle Rudek, and Charles J. Bieberich.

The research was supported by the Academy of Finland, Biomedicum Helsinki Foundation, Cancer Society Finland, Finnish Cultural Foundation, Patrick C. Walsh Cancer Research Fund, the National Institutes of Health, Johns Hopkins University start-up funds, and the Analytical Pharmacology Core of the Johns Hopkins Kimmel Cancer Center.

Amy Mone | EurekAlert!
Further information:
http://www.hopkinscancer.org
http://www.hopkinsmedicine.org/radiation_oncology/
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Severity of enzyme deficiency central to favism
26.07.2016 | Universität Zürich

nachricht From vision to hand action
26.07.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>