Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecule acts as on-off switch for nature's antibiotic factory

29.08.2014

Tells Streptomyces to either veg out or get busy

Scientists have identified the developmental on-off switch for Streptomyces, a group of soil microbes that produce more than two-thirds of the world's naturally derived antibiotic medicines.


The soil bacteria Streptomyces form filamentous branches that extend into the air to create spiraling towers of spores. Duke researchers have discovered the switch that can turn off sporulation and turn on antibiotic production.

Credit: US Centers for Disease Control and Prevention


Duke structural biologists have found a unique interaction between a small molecule called cyclic-di-GMP and a larger protein called BldD that ultimately controls whether a bacterium spends its time in a vegetative state or making antibiotics.

Credit: Maria Schumacher, Duke University

Their hope now would be to see whether it is possible to manipulate this switch to make nature's antibiotic factory more efficient.

The study, appearing August 28 in Cell, found that a unique interaction between a small molecule called cyclic-di-GMP and a larger protein called BldD ultimately controls whether a bacterium spends its time in a vegetative state or gets busy making antibiotics.

Researchers found that the small molecule assembles into a sort of molecular glue, connecting two copies of BldD as a cohesive unit that can regulate development in the Gram-positive bacteria Streptomyces.

"For decades, scientists have been wondering what flips the developmental switch in Streptomyces to turn off normal growth and to begin the unusual process of multicellular differentiation in which it generates antibiotics," said Maria A. Schumacher, Ph.D., an associate professor of biochemistry at the Duke University School of Medicine. "Now we not only know that cyclic-di-GMP is responsible, but we also know exactly how it interacts with the protein BldD to activate its function."

Streptomyces has a complex life cycle with two distinct phases: the dividing, vegetative phase and a distinct phase in which the bacteria form a network of thread-like filaments to chew up organic debris and churn out antibiotics and other metabolites. At the end of this second phase, the bacteria form filamentous branches that extend into the air to create spiraling towers of spores.

In 1998 researchers discovered a gene that kept cultured Streptomyces bacteria from creating these spiraling towers of fuzz on their surface. They found that this gene, which they named BldD to reflect this "bald" appearance, also affected the production of antibiotics.

Subsequent studies have shown that BldD is a special protein called a transcription factor, a type of master regulator that binds DNA and turns on or off more than a hundred genes to control biological processes like sporulation. But in more than a decade of investigation, no one had been able to identify the brains behind the operation, the molecule that ultimately controls this master regulator in Streptomyces.

Then scientists at the John Innes Centre in the United Kingdom -- where much of the research on Streptomyces began -- discovered that the small molecule cyclic-di-GMP is generated by several transcription factors regulated by BldD. The researchers did a quick test to see if this small molecule would itself bind BldD, and were amazed to find that it did. They contacted longtime collaborators Schumacher and Richard G. Brennan Ph.D. at Duke to see if they could take a closer look at this important interaction.

The Duke team used a tool known as x-ray crystallography to create an atomic-level three-dimensional structure of the BldD-(cyclic-di-GMP) complex.

BldD normally exists as a single molecule or monomer, but when it is time to bind DNA and suppress sporulation, it teams up with another copy of itself to do the job. The 3D structure built by the researchers revealed that these two copies of BldD never physically touch, and instead are stuck together by four copies of cyclic-di-GMP.

"We have looked through the protein databank and scoured our memories, but this finding appears to be unique," said Brennan, who is a professor and chair of biochemistry at Duke University School of Medicine. "We have never seen a type of structure before where two monomers become a functional dimer, with no direct interaction between them except a kind of small-molecule glue."

To confirm their findings, Schumacher determined several crystal structures from different flavors of bacteria (S. venezuelae and S. coelicolor) and came up with the same unusual result every time.

Now that the researchers know how cyclic-di-GMP and BldD can become glued together to turn off sporulation and turn on antibiotic production, they would like to know how the complex can become unglued again to flip the switch the other way.

The research was supported by a Long Term EMBO Fellowship (ALTF 693-2012), a Leopoldina Postdoctoral Fellowship, the Biotechnology and Biological Sciences Research Council (BB/H006125/1), the MET Institute Strategic Programme, and the Duke University School of Medicine.

###

CITATION: "Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development," Natalia Tschowri, Maria A. Schumacher, Susan Schlimpert, Nagababu Chinnam, Kim C. Findlay, Richard G. Brennan, and Mark J. Buttner. Cell, August 28, 2014.

Karl Bates | Eurek Alert!

Further reports about: DNA Medicine Streptomyces antibiotics bacteria controls discovered factor glue structure transcription

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>