Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SLU Neurosurgeon Pushes Brain Bypass to New Heights

18.04.2011
Neurosurgery Journal Highlights the High-Flow Procedure Developed by Saleem Abdulrauf

On the cover of a recent edition of Neurosurgery, the highest circulation medical journal in the field, readers saw an artist's intricate depiction of the high-flow brain bypass technique developed by SLU professor of neurosurgery, Saleem Abdulrauf, M.D.

Neurosurgery

Also in the March issue (Volume 63.3) of the journal, Abdulauf shared details of a surgery he performed to treat a patient's brain aneurysm, a weak area in the wall of an artery that supplies blood to the brain.

A leader in neurosurgery innovation, Abdulrauf's high-flow procedure means improved outcomes for patients. His technique is less invasive and keeps more blood flowing in the brain than previous surgeries.

"Saleem's contribution to the field of neurosurgery will leave a lasting legacy," said Philip Alderson, M.D., dean of Saint Louis University School of Medicine. "By convention, a new surgical procedure is named after the person who developed the technique. Accordingly, high blood flow brain bypass surgery might well be known as the Abdulrauf bypass."

Abulrauf likens brain bypass to bypass surgery for the heart. When a patient has an aneurysm involving a brain blood vessel or a tumor at the base of the skull wrapping around a blood vessel, surgeons eliminate the problem vessel by replacing it with an artery from another part of the body.

Brain bypass surgery was first developed in the 1960's in Switzerland by M. Gazi Yasargil, M.D, who is considered the father of modern neurosurgery. Used for complex aneurysms and tumors deep in the base of the skull, Abdulrauf built upon the procedure developed by his mentor, Yasargil.

Instead of replacing a problem artery with a healthy one from the scalp, as the original procedure did, Abdulrauf used an artery from the arm to allow a larger vessel to be replaced.

"With this new technique, we can treat patients in a way that minimizes recovery time and offers the best chance at keeping their brains healthy," Abdulrauf said.

Abdulrauf also has written the first textbook on the procedure, Cerebral Revascularization: Techniques in Extracranial-to-Intracranial Bypass Surgery: Expert Consult. As one of only 10 medical centers in U.S. performing this procedure, Saint Louis University is at the forefront in educating surgeons about the procedure.

Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first medical degree west of the Mississippi River. The school educates physicians and biomedical scientists, conducts medical research, and provides health care on a local, national and international level. Research at the school seeks new cures and treatments in five key areas: cancer, liver disease, heart/lung disease, aging and brain disease, and infectious disease.

Carrie Bebermeyer | EurekAlert!
Further information:
http://www.slu.edu

Further reports about: Brain Bypass Medicine Neurosurgery SLU blood flow bypass surgery neurosurgeon

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>