Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slave rebellion is widespread in ants

26.09.2012
Enslaved worker ants kill the offspring of their parasites and thereby improve the chances of survival for their neighboring relatives

Ants that are held as slaves in nests of other ant species damage their oppressors through acts of sabotage. Ant researcher Professor Dr. Susanne Foitzik of Johannes Gutenberg University Mainz (JGU) first observed this "slave rebellion" phenomenon in 2009. According to the latest findings, however, this behavior now appears to be a widespread characteristic that is not limited to isolated occurrences.


Slave rebellion: A slavemaker pupa is killed by enslaved host workers of the species T. longispinosus.

photo: Alexandra Achenbach

In fact, in three different populations in the U.S. states of West Virginia, New York, and Ohio, enslaved Temnothorax longispinosus workers have been observed to neglect and kill the offspring of their Protomognathus americanus slavemakers rather than care for them. As a result, an average of only 45% of the parasite's offspring survived. This presumably reduces the strength of the parasites in the area and thereby increases the chances of survival for the neighboring colonies populated by the slave ants' relatives.

More than half of all animal species live in parasitic relationships, i.e. they exploit their so-called hosts. From the perspective of evolutionary history, the American slave-making ant Protomognathus americanus is an old social parasite that is entirely dependent on other ant species for its survival. Slave workers have to care for the brood in parasite nests, bring food to their masters and feed them, and even defend the nest.

These ants become slaves when workers from the slave-making ant colony attack the nests of the host species Temnothorax longispinosus, kill the adult ants, and steal the brood. Back in the masters' nest, which can be located in hollow acorns, nutshells, or twigs, the brood care behavior of the emerging slave workers is exploited to the advantage of the slavemaker species. As Susanne Foitzik and her work group have shown, the enslaved worker ants feed and clean the larvae, thereby raising the offspring of their social parasite – but only up to a certain point.

"Probably at first the slaves cannot tell that the larvae belong to another species," explains Foitzik. As a result, 95% of the brood survives the larval stage. But the situation changes as soon as the larvae pupate. "The pupae, which already look like ants, bear chemical cues on their cuticles that can apparently be detected. We have been able to show that a high fraction of the slavemaker pupae are killed by slave workers." The pupae are either neglected or actively killed by being attacked and torn apart. Several slaves at once may assault a pupa, which is unable to move or defend itself during the pupal stage and is also not protected by a cocoon.

In parasite nests in West Virginia, only 27% of the pupae survived, and in the New York colonies, only 49%. In Ohio, the survival chances of the American slave-making ant was a bit higher at 58%, but this figure is still well below the survival rate of 85% for host pupae in their own free-living nests. "The enslaved workers do not directly benefit from the killings because they do not reproduce," explains Susanne Foitzik. But, through the killing of slavemaker offspring, their neighboring relatives – which might very well be the sisters of the worker slaves – indirectly benefit as their chances of survival are increased. Slavemaker colonies damaged by slave rebellions grow slower and smaller slave-making colonies conduct fewer and less destructive slave raids.

The large differences in the death rates in colonies from different regions fits to predictions derived from the geographic mosaic theory of co-evolution. This theory claims that populations differ because they are subjected to different local selection pressures and because they possess different attack or defense traits originated through mutations, which in turn means that evolution can go in different directions in different geographic areas. While the host ants in New York are very aggressive and often successfully thwart slave raid attempts, the hosts in West Virginia profit more from the slave rebellion behavior because, as genetic analyses have shown, the neighboring colonies are more often close relatives to the rebelling slaves.

This study on the evolution of slave rebellion has been financed since October 2011 by the project "The evolution of resistance and virulence in structured populations" funded by the German Research Foundation.

Publication
Tobias Pamminger et al., Geographic distribution of the anti-parasite trait "slave rebellion", Evolutionary Ecology, June 2012

doi:10.1007/s10682-012-9584-0

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15733_ENG_HTML.php
http://link.springer.com/article/10.1007/s10682-012-9584-0?null
http://ww.bio.uni-mainz.de/zoo/evobio/index_ENG.php

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>