Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using own skin cells to repair hearts on horizon

03.03.2010
Biomedical scientist brings stem cell research to UH

A heart patient's own skin cells soon could be used to repair damaged cardiac tissue thanks to pioneering stem cell research of the University of Houston's newest biomedical scientist, Robert Schwartz.

His new technique for reprogramming human skin cells puts him at the forefront of a revolution in medicine that could one day lead to treatments for Alzheimer's, diabetes, muscular dystrophy and many other diseases.

Schwartz brings his ground-breaking research to UH as the Cullen Distinguished Professor of Biology and Biochemistry and head of UH's new Center for Gene Regulation and Molecular Therapeutics. He also is affiliated with the Texas Heart Institute at St. Luke's Episcopal Hospital in the Texas Medical Center, where he is director of stem cell engineering.

"Professor Schwartz's work will save lives, and his decision to pursue this pioneering research at UH is a big leap forward on our way to Tier-One status," said John Bear, dean of the UH College of Natural Sciences and Mathematics. "Together with the many other outstanding scientists we've assembled here, Schwartz will help make this university a major player in medical research."

Schwartz devised a method for turning ordinary human skin cells into heart cells. The cells developed are similar to embryonic stem cells and ultimately can be made into early-stage heart cells derived from a patient's own skin. These then could be implanted and grown into fully developed beating heart cells, reversing the damage caused by previous heart attacks. These new cells would replace the damaged cardiac tissue that weakens the heart's ability to pump, develops into scar tissue and causes arrhythmias. Early clinical trials using these reprogrammed cells on actual heart patients could begin within one or two years.

Although Schwartz is not the first scientist to turn adult cells into such stem cells, his improved method could pave the way for breakthroughs in other diseases. Schwartz's method requires fewer steps and yields more stem cells. Armed with an effective way to make induced stem cells from a patient's own skin, scientists can then begin the work of growing all kinds of human cells.

For example, new brain cells could treat Alzheimer's patients or those with severe brain trauma, or a diabetic could get new insulin-producing cells in the pancreas. Generating new kidney, lung or liver tissue is also possible, with scientists even being able to one day grow an entirely new heart or other organ from these reprogrammed cells. Additionally, Schwartz and his team are working on turning induced stem cells into skeletal muscle cells to treat muscular dystrophy.

"We're trying to advance science in ways folks never even dreamed about," Schwartz said. "The idea of having your own bag of stem cells that you can carry through life and use for tissue regeneration is at the very cutting edge of science."

This latest biomedical hire is a major step in the UH Health Initiative, an effort aimed at having the university become a world-class center for medical research. Creating new cross-disciplinary academic and health-related research opportunities for faculty and students is crucial to this initiative, as are collaborations with other Texas Medical Center member institutions. One of its top goals is to increase the amount of sponsored research expenditures awarded to UH, which is a key factor in attaining Tier-One status.

"Dr. Schwartz will expand UH's expertise in promising new areas of scientific discovery to alleviate human disease. By recruiting premier scientists like Schwartz, UH is fast becoming a major player in the regional biomedical research community," said Kathryn Peek, assistant vice president of University Health Initiatives at UH.

Schwartz has decades of experience at the Texas Medical Center. Before coming to UH, he was director of the Institute of Biosciences and Technology, a research component of the Texas A&M Health Science Center. He also was a longtime tenured professor at Baylor College of Medicine and co-directed the school's Center for Cardiovascular Development. The new research center Schwartz heads at UH will be housed in state-of-the-art laboratory facilities at the university's Science and Engineering Research Center.

What attracted him to UH was the commitment of administrators and faculty to making the university a premier center for biomedical research. His hiring comes just a year after the arrival of Jan-Åke Gustafsson, a world-renowned scientist and cancer researcher. They join other leading UH faculty, ranging from biochemists to computer scientists and mathematicians, who are deeply involved in cutting-edge medical research.

About the University of Houston

The University of Houston, Texas' premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 37,000 students.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 170 ranked faculty and approximately 4,500 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

For more information about UH, visit the university's Newsroom at http://www.uh.edu/news-events/.

To receive UH science news via e-mail, visit http://www.uh.edu/news-events/mailing-lists/sciencelistserv.php.

For additional news alerts about UH, follow us on Facebook at http://tinyurl.com/6qw9ht and on Twitter at http://twitter.com/UH_News.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>