Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simpler fabrication of nanogaps

14.02.2011
A template-based coating technique allows the production of gapped nanostructures over large areas

Plasmons, which are density waves of electrons, are of great interest to pure and applied scientists because of their novel properties, and because of their application to sensing and photonic technologies.


Figure 1: A micrograph of a completed gold double-nanopillar array. Copyright : 2011 American Chemical Society

These applications are possible because plasmons are sensitive to surface properties, and allow for the concentration of electric fields into small volumes. Fabricating the intricate nanostructures necessary to support plasmons, however, has proved a challenge. Now a straightforward fabrication technique, capable of generating plasmon-supporting nanogap structures over large areas, has been demonstrated by Wakana Kubo and Shigenori Fujikawa from the RIKEN Innovation Center, Wako, and the Japan Science and Technology Agency[1].

The researchers fabricated many copies of a structure consisting of two nested vertical gold cylinders, with the cylinders spaced apart by tens of nanometers. This structure, called a ‘double nanopillar’, was designed to support a highly concentrated electric field in the gap between the cylinders, in response to illumination with light. When the gap was filled with a liquid or gas, the optical properties of the double nanopillar changed, making it a useful sensor.

Typically, closely gapped structures such as the double nanopillar are fabricated individually by carving a polymer resist with an electron beam, but this process is slow and can pattern only small areas. Fujikawa and colleagues used a template-based coating process instead. They etched a silicon wafer to make a mold of periodically spaced holes, and applied the mold to a soft polymer film, resulting in an array of polymer pillars. They then coated these pillars with a gold layer, followed by a spacer, and a second gold layer. Finally, they removed the polymer film and spacer layers, leaving a double nanopillar array. Using this process, the researchers could make a patterned area as large as the original template, and adapt it to include different spacer materials with finely controlled thicknesses.

Kubo and Fujikawa tested the double nanopillars as sensors of refractive index, which showed sensitivities that were greater than sensors that had equivalent metal surface areas, but which did not have a nanoscale gap. This comparison demonstrated that the electric field in the double nanopillars was indeed highly concentrated. The new fabrication process marks just the beginning of an extended research program, says Fujikawa. “We do not fully understand the optical behavior of these nanostructures,” he explains. “We will seek out collaborations with other researchers to investigate them further, and will try including magnetic, electric and organic materials into our process.”

The corresponding author for this highlight is based at the Interfacial Nanostructure Research Laboratory, RIKEN Innovation Center

Journal information

[1] Kubo, W. & Fujikawa, S. Au double nanopillars with nanogap for plasmonic sensor. Nano Letters 11, 8–15 (2011)

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>