Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple New Method Detects Contaminants in Life-Saving Drug

19.11.2008
The blood-thinning drug heparin is highly effective when used to prevent and treat blood clots in veins, arteries and lungs, but earlier this year its reputation as a lifesaver was sullied when contaminated heparin products caused serious allergic reactions that led to a large number of deaths.

Now, University of Michigan researchers have demonstrated a simple, inexpensive method for detecting contaminants in heparin, a development that could prevent such tragedies in the future.

The new method is described in a paper published online Nov. 14 in the journal Analytical Chemistry.

The method relies on potentiometric polyanion sensors originally developed in the lab of U-M researcher Mark Meyerhoff as a tool for detecting heparin in blood. In the latest work, Meyerhoff and coworkers show that the disposable sensors also can be used to distinguish pure heparin from heparin that is tainted with small quantities of oversulfated chondroitin sulfate (OSCS), the culprit in the recent deaths.

"In this technique, the magnitude of the voltage you get from the sensing membrane is dependent on polyion charge density," Meyerhoff said, "and because the contaminant has a higher charge density than heparin, the method allows us to detect the contaminant in the presence of excess heparin."

The new method is simpler and less expensive than analytical methods such as nuclear magnetic resonance (NMR) and capillary electrophoresis (CE), which have been suggested for detection of OSCS contaminants.

Meyerhoff, who is the Philip J. Elving Professor of Chemistry, envisions the procedure being used on site in drug manufacturing plants to screen raw materials or finalized, biomedical grade heparin products for contaminants.

Meyerhoff's coauthors on the paper are graduate student Lin Wang and former graduate student Stacey Buchanan, who is now a faculty member at Henry Ford Community College in Dearborn, Mich.

For more information:

Mark Meyerhoff: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?beginswith=Meyerhoff

Analytical Chemistry: http://pubs.acs.org/journals/ancham/

U.S. Food and Drug Administration information on heparin contamination: http://www.fda.gov/cder/drug/infopage/heparin/heparinQA.htm

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>