Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


SIBLING proteins may predict oral cancer

The presence of certain proteins in premalignant oral lesions may predict oral cancer development, Medical College of Georgia researchers said.

SIBLINGs, or Small Integrin-Binding Ligand N-linked Glycoproteins, are a family of five proteins that help mineralize bone but can also spread cancer. SIBLINGs have been found in cancers including breast, lung, colon and prostate.

"Several years ago we discovered that three SIBLINGs—osteopontin, bone sialoprotein and dentin sialophosphoprotein—were expressed at significantly high levels in oral cancers," said Dr. Kalu Ogbureke, an oral and maxillofacial pathologist in the MCG School of Dentistry. "Following that discovery, we began to research the potential role of SIBLINGs in oral lesions before they become invasive cancers."

The study, published online this week in the journal Cancer, examined 60 archived surgical biopsies of precancerous lesions sent to MCG for diagnosis and the patients' subsequent health information. Eighty-seven percent of the biopsies were positive for at least one SIBLING protein—which the researchers discovered can be good or bad, depending on the protein. For instance, they found that the protein, dentin sialophosphoprotein, increases oral cancer risk fourfold, while bone sialoprotein significantly decreases the risk.

"The proteins could be used as biomarkers to predict [the potential of a lesion to become cancerous]," said Dr. Ogbureke, the study's lead author. "That is very significant, because we would then be in a position to modify treatment for the individual patient's need in the near future."

Precancerous oral lesions, which can develop in the cheek, tongue, gums and floor and roof of the mouth, are risk factors for oral squamous cell carcinoma, which accounts for over 95 percent of all oral and pharyngeal cancers. Oral cancer, the sixth most common cancer in the world, kills about 8,000 Americans annually, Dr. Ogbureke said.

Treatment has been stymied up to this point because of clinicians' inability to predict which lesions will become cancerous. Surgery is standard for oral cancer, but treatment methods vary for precancerous lesions.

"When we treat these lesions now, there's an implied risk of under- or over-treating patients," Dr. Ogbureke said. "For example, should the entire lesion be surgically removed before we know its potential to become cancer, or should we wait and see if it becomes cancer before intervening?"

Further complicating the matter is that the severity of dysplasia, or abnormal cell growth, in a lesion can be totally unrelated to cancer risk. Some mild dysplasias can turn cancerous quickly while certain severe dysplasias can remain harmless indefinitely. The protein findings, which help eliminate the guesswork in such cases, "are fundamental," Dr. Ogbureke said. "If we're able to recognize these lesions early and biopsy them to determine their SIBLING profile, then oral cancer could be preventable and treatable very early."

Dr. Ogbureke's next step is to design a multi-center study that incorporates oral cancer risk factors, such as smoking and alcohol consumption, to further investigate their relationship with SIBLING protein expression.

Paula Hinely | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>