Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to shoot the messenger

26.01.2010
EMBL scientists shed light on cellular communication systems involved in neurodegeneration, cancer and cardiovascular disease

Cells rely on a range of signalling systems to communicate with each other and to control their own internal workings. Scientists from the European Molecular Biology Laboratory (EMBL) in Hamburg, Germany, have now found a way to hack into a vital communications system, raising the possibility of developing new drugs to tackle disorders like neurodegeneration, cancer and cardiovascular disease. In a study published today in Science Signaling, they have pieced together the first snapshot of what two of the system’s components look like while interacting.

One way these signalling systems work is by triggering a flood of calcium ions inside the cell. These get picked up by a receiver, a protein called calmodulin which turns this calcium signal into action by switching various parts of the cell’s machinery on or off. Calmodulin regulates a set of proteins called kinases, each of which controls the activity of specific parts of the cell, thus altering the cell’s behaviour.

Using high-energy X-rays produced by the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, and by the German Synchrotron Radiation Centre (DESY), in Hamburg, Germany, Matthias Wilmanns’ team at EMBL revealed the molecular structure of one of these kinases, a protein called Death-Associated Protein Kinase DAPK, when bound to calmodulin. The structure showed how calmodulin binds to a particular section of DAPK, switching the kinase on so that it can go and change the function of its targets. The team then worked out which of DAPK’s building blocks, or amino acids, were crucial for calmodulin to bind.

“Faulty versions of DAPK are involved in the development of some cancers,” says Wilmanns, “so we want to know more about how this protein functions to allow its better exploitation as an anti-cancer target.”

What’s more, DAPK has physical similarities to many of the other kinases controlled by calmodulin, meaning many of them are likely to interact with calmodulin in the same, or similar ways. Being able to see the three-dimensional structures of these proteins, how they clip together and alter each other’s behaviour means researchers can devise ways to manipulate this interaction with drugs.

“That will provide a platform to get into drug discovery,” says Wilmanns, adding, “obviously, this is the beginning of the story.” He is planning to do so in an ongoing collaboration with Adi Kimchi’s team at the Weizmann Institute in Israel and other groups from EMBL.

Policy regarding use

EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 6221 387 -8263
Fax: +49 6221 387 -8525
sonia.furtado@embl.de

Sonia Furtado | EMBL
Further information:
http://www.embl.org
http://www.embl.de/aboutus/communication_outreach/media_relations/2010/100126_Hamburg/index.html

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>