Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shark teeth are not harder than human teeth

30.07.2012
Scientists at the University of Duisburg-Essen (UDE) and the Max-Planck-Institut für Eisenforschung (MPIE) in Düsseldorf have analyzed the structure of shark teeth and human teeth.
The results of this research project are surprising: Although shark teeth contain 100% of a fluoride (i.e. the mineral which is also present in low concentrations in toothpastes), they are not harder than our teeth.

It is not by coincidence that the material and nano scientists have analyzed shark teeth. "I had wanted to do this for a long time", underlined Matthias Epple, Professor for Inorganic Chemistry. "We have been investigating biomineralization at the UDE for several years. It is our main goal to determine the effect of inorganic minerals on biological systems, such as teeth, bones and seashells.

It is well-known that sharks have enamel which consists of the very hard mineral fluoroapatite. So far, no scientist has investigated this with high-end chemical and physical methods." This was now done by Epple and his colleague from the MPIE Professor Dierk Raabe, together with Dr Oleg Prymak and Joachim Enax. The main part of the work was carried out at UDE. The MPIE was the institute, where especially the mechanical measurements took place.

For this study the teeth of shortfin mako shark and tiger shark were literally "taken apart" – for these shark species have different habits of eating their prey. By scanning electron microscopy and X-ray diffraction, the scientists analyzed the order, the size and the nature of the fluoroapatite crystals and determined the hardness of the teeth locally in small areas with mechanical measurements.

Epple and his co-workers showed that the chemical and crystallographic composition of teeth is similar in different shark species, although mako sharks "tear" into the flesh of their prey while tiger sharks "cut" it. The interior consists of the more elastic dentin; the outer part is the highly mineralized enamel.

Thus one might suppose that shark teeth are harder than human teeth. "The human enamel consists of a little softer mineral, hydroxyapatite, which is incidentally also present in bones." By carrying out a comparative study with a human tooth, the scientists discovered something surprisingly new: It is just as robust as that of that fearful animal. "This is due to the special micro- and nanostructure of our teeth.

The crystals in human teeth have a special arrangement and they are "glued together" by proteins, which stops cracks from running through the whole tooth", said Epple, who is also a member of the Center for Nanointegration Duisburg-Essen (CENIDE). Incidentally nature has equipped all creatures similarly: If teeth were fully mineralized they would be in danger of cracking upon mechanical shock.

The scientists are now continuing their research on shark teeth, e.g. on sharks of different age. With their experiments they are trying to imitate these structures to lay the foundations for novel dental prostheses. "It would be great if – sometime in the future - one could repair teeth with a material, which is more natural than today`s provisional solutions."

Until then, humans will have to accept that sharks still have better teeth: They are replaced continuously and do not develop any cavities. "The reason might be the fluoroapatite and the revolving set of teeth which is always immersed in sea water", explained Matthias Epple. "And finally: Sharks do not eat sugar."

The research findings are published in the recent issue of the Journal of Structural Biology, 178 (2012). DOI http://dx.doi.org/10.1016/j.jsb.2012.03.012.

Further information: Prof. Dr. Matthias Epple, University of Duisburg-Essen, +49 0201/183-2413, matthias.epple@uni-due.de

Note for editorial staff: Prof. Epple will be out of office until August, 20th. The university press office can contact him. Please write to Ms. Ulrike Bohnsack, ulrike.bohnsack@uni-due.de

Ulrike Bohnsack | idw
Further information:
http://www.uni-due.de

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>