It is well-known that sharks have enamel which consists of the very hard mineral fluoroapatite. So far, no scientist has investigated this with high-end chemical and physical methods." This was now done by Epple and his colleague from the MPIE Professor Dierk Raabe, together with Dr Oleg Prymak and Joachim Enax. The main part of the work was carried out at UDE. The MPIE was the institute, where especially the mechanical measurements took place.
For this study the teeth of shortfin mako shark and tiger shark were literally "taken apart" – for these shark species have different habits of eating their prey. By scanning electron microscopy and X-ray diffraction, the scientists analyzed the order, the size and the nature of the fluoroapatite crystals and determined the hardness of the teeth locally in small areas with mechanical measurements.
Epple and his co-workers showed that the chemical and crystallographic composition of teeth is similar in different shark species, although mako sharks "tear" into the flesh of their prey while tiger sharks "cut" it. The interior consists of the more elastic dentin; the outer part is the highly mineralized enamel.
Thus one might suppose that shark teeth are harder than human teeth. "The human enamel consists of a little softer mineral, hydroxyapatite, which is incidentally also present in bones." By carrying out a comparative study with a human tooth, the scientists discovered something surprisingly new: It is just as robust as that of that fearful animal. "This is due to the special micro- and nanostructure of our teeth.
The crystals in human teeth have a special arrangement and they are "glued together" by proteins, which stops cracks from running through the whole tooth", said Epple, who is also a member of the Center for Nanointegration Duisburg-Essen (CENIDE). Incidentally nature has equipped all creatures similarly: If teeth were fully mineralized they would be in danger of cracking upon mechanical shock.The research findings are published in the recent issue of the Journal of Structural Biology, 178 (2012). DOI http://dx.doi.org/10.1016/j.jsb.2012.03.012.
Further information: Prof. Dr. Matthias Epple, University of Duisburg-Essen, +49 0201/183-2413, matthias.epple@uni-due.de
Ulrike Bohnsack | idw
Further information:
http://www.uni-due.de
Further reports about: > MPIE > Shark > Shark teeth > UDE > biological system > biological systems > elastic dentin > human teeth > mechanical measurements > shark species
Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo
Full of hot air and proud of it
18.04.2018 | University of Pittsburgh
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.
Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...
The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.
“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Improved stability of plastic light-emitting diodes
19.04.2018 | Power and Electrical Engineering
Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | Life Sciences
New capabilities at NSLS-II set to advance materials science
18.04.2018 | Materials Sciences