Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shark teeth are not harder than human teeth

30.07.2012
Scientists at the University of Duisburg-Essen (UDE) and the Max-Planck-Institut für Eisenforschung (MPIE) in Düsseldorf have analyzed the structure of shark teeth and human teeth.
The results of this research project are surprising: Although shark teeth contain 100% of a fluoride (i.e. the mineral which is also present in low concentrations in toothpastes), they are not harder than our teeth.

It is not by coincidence that the material and nano scientists have analyzed shark teeth. "I had wanted to do this for a long time", underlined Matthias Epple, Professor for Inorganic Chemistry. "We have been investigating biomineralization at the UDE for several years. It is our main goal to determine the effect of inorganic minerals on biological systems, such as teeth, bones and seashells.

It is well-known that sharks have enamel which consists of the very hard mineral fluoroapatite. So far, no scientist has investigated this with high-end chemical and physical methods." This was now done by Epple and his colleague from the MPIE Professor Dierk Raabe, together with Dr Oleg Prymak and Joachim Enax. The main part of the work was carried out at UDE. The MPIE was the institute, where especially the mechanical measurements took place.

For this study the teeth of shortfin mako shark and tiger shark were literally "taken apart" – for these shark species have different habits of eating their prey. By scanning electron microscopy and X-ray diffraction, the scientists analyzed the order, the size and the nature of the fluoroapatite crystals and determined the hardness of the teeth locally in small areas with mechanical measurements.

Epple and his co-workers showed that the chemical and crystallographic composition of teeth is similar in different shark species, although mako sharks "tear" into the flesh of their prey while tiger sharks "cut" it. The interior consists of the more elastic dentin; the outer part is the highly mineralized enamel.

Thus one might suppose that shark teeth are harder than human teeth. "The human enamel consists of a little softer mineral, hydroxyapatite, which is incidentally also present in bones." By carrying out a comparative study with a human tooth, the scientists discovered something surprisingly new: It is just as robust as that of that fearful animal. "This is due to the special micro- and nanostructure of our teeth.

The crystals in human teeth have a special arrangement and they are "glued together" by proteins, which stops cracks from running through the whole tooth", said Epple, who is also a member of the Center for Nanointegration Duisburg-Essen (CENIDE). Incidentally nature has equipped all creatures similarly: If teeth were fully mineralized they would be in danger of cracking upon mechanical shock.

The scientists are now continuing their research on shark teeth, e.g. on sharks of different age. With their experiments they are trying to imitate these structures to lay the foundations for novel dental prostheses. "It would be great if – sometime in the future - one could repair teeth with a material, which is more natural than today`s provisional solutions."

Until then, humans will have to accept that sharks still have better teeth: They are replaced continuously and do not develop any cavities. "The reason might be the fluoroapatite and the revolving set of teeth which is always immersed in sea water", explained Matthias Epple. "And finally: Sharks do not eat sugar."

The research findings are published in the recent issue of the Journal of Structural Biology, 178 (2012). DOI http://dx.doi.org/10.1016/j.jsb.2012.03.012.

Further information: Prof. Dr. Matthias Epple, University of Duisburg-Essen, +49 0201/183-2413, matthias.epple@uni-due.de

Note for editorial staff: Prof. Epple will be out of office until August, 20th. The university press office can contact him. Please write to Ms. Ulrike Bohnsack, ulrike.bohnsack@uni-due.de

Ulrike Bohnsack | idw
Further information:
http://www.uni-due.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>