Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sertoli cells show promise for therapeutics

12.07.2011
Two papers published in the current issue of Cell Transplantation (20:5), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/, highlight the therapeutic potential of human Sertoli cells that are present in the testes and are also called "nurse" or "mother" cells because they nurture the developing sperm cells.

Sertoli cells form the blood-testes barrier that separates the blood compartment of the testes from the compartment of the seminiferous tubules. Once differentiated to form the blood-testes barrier, Sertoli cells do not proliferate, although recent research has been aimed at growing Sertoli cells outside of the body.

Determining Sertoli cell functionality in vitro

A team of U.S. and Argentina-based researchers reporting on isolating and characterizing Sertoli cells from deceased human organ/tissue donors report on techniques by which Sertoli cells "proliferated readily" in vitro under "optimized conditions" with a four day "doubling time."

"Since there is interest in using Sertoli cells to minimize transplant rejection due to their immunological suppressive properties, establishing conditions to produce proliferative human Sertoli cells in vitro could facilitate research on their use for therapeutic applications in cell or organ transplantation," said study corresponding author Dr. Constance M. John of San Francisco-based MandalMed, Inc. "In this study we aimed to isolate and expand primary adult human Sertoli cells from cadaveric testes and characterize them to determine their functionality in vitro."

The researchers found that expanded, cryopreserved Sertoli cells could retain their characteristic markers and exhibited prototype functionality to establish a tight junction barrier.

"The cells provided evidence of potential utility in spermatogenesis and infertility research and reproductive toxicology," concluded the researchers. "Because of their robust proliferative activity and unique biological role, the primary Sertoli cells could have cell therapy applications."

Contact: Dr. Constance M. John, MandalMed, Inc. 665 3rd St. Suite 250,
San Francisco, CA 94107
Tel. (415) 495-5570
Fax. (415) 495- 5575
Email: constancejohn@mandalmed.com
Citation: Chui, K. ; Trivedi, A. ; Cheng, C. Y.; Cherbavaz, D. B.; Dazin, P. F. ; Huynh, A. L. T.; Mitchell, J. B.; Rabinovich, G. A.; Noble-Haeusslein, L. J.; John, C. M. Characterization and Functionality of Proliferative Human Sertoli Cells. Cell Transplant. 20(5):619-635;_2011.

Sertoli cells successfully deliver therapeutics deep into the lung

In a study seeking a better way to get medication to lower lung areas, such as to the alveoli and other areas difficult to reach and in which to retain therapeutics, University of South Florida (USF) researchers report that rat Sertoli cells loaded with chitosan nanoparticles and coupled with an anti-inflammatory compound, injected into the tails of mice with deep inflammation, reached the deep areas of the lung quickly and stayed active.

Current lung therapy techniques, such as aerosols, nebulizer mists, Metered Dose Inhalers and other means have proven largely ineffective because of airway obstructions, mucus, and airway edema that often prevent inhaled delivery. Even when these therapeutics are delivered effectively, they are often quickly expelled during exhalation and the drug is not in the lung long enough for sustained release.

"A novel way to deliver nanoparticles coupled with drugs to the deep lung is to utilize a bio-compatible cell-based system and deliver therapy through the peripheral vasculature instead of a pulmonary route," said corresponding author Dr. Donald F. Cameron of the University of South Florida (USF) Department of Pathology and Cell Biology.

The USF study tested the delivery of an anti-inflammatory compound to the deep lungs of animals modeled with pulmonary inflammation and found a "high therapeutic effect" 24 hours after drug delivery.

"The drug-loaded Sertoli cells became entrapped in the host animal's deep lung and was distributed around the alveoli while intact Sertoli cells were not detected in other tissues or organs," said Dr. Cameron. "At 15 minutes post injection, 92 percent of the labeled nanoparticle load in the injected Sertoli cells were present in the lungs with a minimal amount detected in the liver and kidney."

The researchers concluded that the use of pre-loaded Sertoli cells to deliver therapeutic nanoparticles to the lungs through the peripheral vasculature and subsequently migrated to the pulmonary vasculature, potentially providing an effective therapeutic alternative to current methodologies that have been proven less effective.

"These two studies describe a set of conditions for expanding human sertoli cells in vitro from deceased organ/tissue donors and a potential use for the cells (this time taken from rats)" said Dr. Camillo Ricordi, coeditor-in-chief of Cell Transplantation and Director of the Cell Transplant Center and Diabetes Research Institute at the University of Miami. "While the second paper covers the potential use of sertoli cells as vectors for the delivery of specific factors to the deep areas of the lung, these cells may also be beneficial as delivery systems for other disorders. This will require further investigation."

Contact: Dr. D.F. Cameron, MDC 11, Department of Pathology & Cell Biology, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. Tampa, FL 33612
Tel. (813) 974-9434
Fax. (813) 974-2058
Citation: Kumar, A.; Glam, M.; El-Badri, N.; Mohapatra, S.; Haller, E.; Park, S.; Patrick, L.; Nattkemper, L.; Vo, D.; Cameron, D. F. Initial Observations of Cell-Mediated Drug Delivery to the Deep Lung. Cell Transplant. 20(5):609-618; 2011.

The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News release by Randolph Fillmore, Florida Science Communications, www.sciencescribe.net

David Eve | EurekAlert!
Further information:
http://www.sciencescribe.net

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>