Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists produce first stem cells from endangered species

05.09.2011
Cells could make it possible to improve reproduction and genetic diversity for some species, possibly saving them from extinction, or to bolster the health of endangered animals in captivity

Starting with normal skin cells, scientists from The Scripps Research Institute have produced the first stem cells from endangered species. Such cells could eventually make it possible to improve reproduction and genetic diversity for some species, possibly saving them from extinction, or to bolster the health of endangered animals in captivity.


Drill primate
Credit: San Diego Zoo

A description of the accomplishment appeared in an advance online edition of the journal Nature Methods on September 4, 2011.

Genesis

About five years ago, Oliver Ryder, PhD, the director of genetics at the San Diego Zoo Institute for Conservation Research, contacted Jeanne Loring, PhD, professor of developmental neurobiology at Scripps Research, to discuss the possibility of collecting stem cells from endangered species. Ryder's team had already established the Frozen Zoo, a bank of skin cells and other materials from more than 800 species and wondered if the thousands of samples they had amassed might be used as starting points.

Just as is hoped with humans, Ryder thought stem cells from endangered species might enable lifesaving medical therapies or offer the potential to preserve or expand genetic diversity by offering new reproduction possibilities.

At the time, although researchers were working with stem cells from embryos, scientists had not yet developed techniques for reliably inducing normal adult cells to become stem cells. But the technology arrived soon after, and scientists now accomplish this feat, called induced pluripotency, by inserting genes in normal cells that spark the transformation.

While Loring's team met with Ryder in early 2008, they realized that these newly emerging techniques might be applied to endangered species. Postdoctoral fellow Inbar Friedrich Ben-Nun, PhD, set out to systematically explore the possibilities.

Ryder suggested two species for initial work. The first was a highly endangered primate called a drill that he chose because of its close genetic connection to humans, and because in captivity the animals often suffer from diabetes, which researchers are working to treat in humans using stem cell-based therapies.

The northern white rhinoceros was the second candidate. Ryder chose this animal because it is genetically far removed from primates, and because it is one of the most endangered species on the planet. There are only seven animals still in existence, two of which reside at the San Diego Zoo Safari Park.

Initially members of the team thought they would have to isolate and use genes from animals closely related to the endangered species to successfully induce pluripotency. But that line of experimentation didn't work. Instead, to their surprise, after a year of trial and error, the researchers found that the same genes that induce pluripotency in humans also worked for the drill and the rhino. "It has been just amazing," said Ryder of the Scripps Research team's successes.

The process is inefficient, meaning only a few stem cells are produced at a time, but that's enough. "There are only two animals in it," said Ben-Nun, "but we have the start of a new zoo, the stem cell zoo."

Stem Cells to the Rescue

The scientists view their success as a first step toward greater advancements. Besides the possibility of using stem cells as the basis for diabetes or other treatments, there is great potential for new reproductive technologies as the stem cell research field advances. "The most important thing is to provide these stem cells as a resource for other people taking some of the next steps," said Loring.

One of the greatest concerns with small populations such as the northern white rhinos is that even if they did reproduce, which hasn't happened in many years, their genetic diversity is inevitably and dangerously low, and such inbreeding leads to unhealthy animals.

But researchers are moving toward inducing stem cells to differentiate into sperm or egg cells. With that accomplished, one possibility is that scientists could take skin cells in the Frozen Zoo from long dead animals, induce pluripotency, trigger differentiation into sperm cells, and then combine these with a living animal's eggs through in vitro fertilization. Otherwise-lost genetic diversity would then be reintroduced into the population, making it healthier, larger, and more robust.

Or, both eggs and sperm might be produced from the stem cells, with the resulting embryos implanted in live animals, a process that current research suggests could be much more reliable than existing cloning techniques.

Scientists are already exploring the possibility of producing sperm and eggs from stem cells as a potential solution to human infertility issues. Loring hopes that some of these groups might consider initial technique development using endangered species stem cells. "I think that work would be a lot easier ethically with endangered species than with humans," she said, "so I suspect some people working in this area would love to have our cells for experiments."

The Real Solution

"The best way to manage extinctions is to preserve species and their habitats," said Ryder, "but that's not working all the time." The rhinos are a perfect example, he said, because there are so few. "Stem cell technology provides some level of hope that they won't have to become extinct even though they've been completely eliminated from their habitats. I think that if humankind wants to save this species, we're going to have to develop new methodologies."

And even when there are reasonable wild populations of a species, they face a range of threats, including loss of habitat and poaching.

Moving forward, Loring said the group is hoping to continue producing stem cells from other species to expand their fledgling stem cell "zoo." For now, they're working to secure funding for what amounts to an unconventional line of research. "It's in between fields," said Loring. "It's not classical conservation and it's not ordinary biological research."

This research was supported by the Esther O'Keefe Foundation, the Millipore Foundation, and the California Institute for Regenerative Medicine.

In addition to Ryder, Loring, and Ben-Nun, authors on the paper, titled, "Generation of induced pluripotent stem cells from highly endangered species," (DOI 10.1038/nmeth.1706) were Susanne Montague, Ha Tran, Ibon Garitaonandia, Trevor Leonardo, Yu-Chieh Wang, Scripps Research, Louise Laurent from Scripps Research and UCSD, and Marlys Houck and Suellen Charter from the San Diego Zoo Institute for Conservation Research.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>