Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unlock key to blood vessel formation

11.08.2014

Scientists from the University of Leeds have discovered a gene that plays a vital role in blood vessel formation, research which adds to our knowledge of how early life develops.

The discovery could also lead to greater understanding of how to treat cardiovascular diseases and cancer.

Professor David Beech, of the School of Medicine at the University of Leeds, who led the research, said: "Blood vessel networks are not already pre-constructed but emerge rather like a river system.

Vessels do not develop until the blood is already flowing and they are created in response to the amount of flow. This gene, Piezo1, provides the instructions for sensors that tell the body that blood is flowing correctly and gives the signal to form new vessel structures.

... more about:
»Medicine »arteries »blood »built »endothelial »strain »vessel

"The gene gives instructions to a protein which forms channels that open in response to mechanical strain from blood flow, allowing tiny electrical charges to enter cells and trigger the changes needed for new vessels to be built."

The research team is planning to study the effects of manipulating the gene on cancers, which require a blood supply to grow, as well as in heart diseases such as atherosclerosis, where plaques form in parts of blood vessels with disturbed blood flow.

Professor Beech added: "This work provides fundamental understanding of how complex life begins and opens new possibilities for treatment of health problems such as cardiovascular disease and cancer, where changes in blood flow are common and often unwanted.

"We need to do further research into how this gene can be manipulated to treat these diseases. We are in the early stages of this research, but these findings are promising."

Professor Jeremy Pearson, Associate Medical Director at the British Heart Foundation, which part-funded the research, said: "Blood flow has a major effect on the health of the arteries it passes through. Arteries are more likely to become diseased in areas where the flow is disturbed, for example.

This is because the endothelial cells lining the arteries are exquisitely sensitive to this flow and their response to changes can lead to disease, where the artery becomes narrowed and can eventually cause a heart attack.

"Until now, very little has been known about the process by which blood flow affects endothelial cells. This exciting discovery, in mice, tells us that a protein in those cells could be critical in detecting and responding to changes in blood flow.

"Through further research, using this knowledge, we hope to see whether a treatment can be developed that targets this process to prevent the development of disease in healthy arteries."

###

The research was also funded by the Medical Research Council and the Wellcome Trust and will be published in the journal Nature.

The researchers conducted the study using mouse models.

Further information

Professor David Beech is available for interview. Contact Ben Jones in the press office on +44 (0)113 343 8059 or email B.P.Jones@leeds.ac.uk

A copy of the research paper 'Piezo1 integration of vascular architecture with physiological force', by Li et al, is available from the press office. DOI: 10.1038/nature13701

University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK and a member of the Russell Group of research-intensive universities. http://www.leeds.ac.uk

Ben Jones | Eurek Alert!

Further reports about: Medicine arteries blood built endothelial strain vessel

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>