Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Mammal Model of Bladder Regeneration

15.10.2012
While it is well known that starfish, zebrafish and salamanders can re-grow damaged limbs, scientists understand very little about the regenerative capabilities of mammals.

Now, researchers at Wake Forest Baptist Medical Center’s Institute for Regenerative Medicine report on the regenerative process that enables rats to re-grow their bladders within eight weeks.

In PLOS ONE, a peer-reviewed, online publication, the scientists characterize this unique model of bladder regeneration with the goal of applying what they learn to human patients.

“A better understanding of the regenerative process at the molecular and cellular level is a key to more rapid progress in applying regenerative medicine to help patients,” said George Christ, Ph.D., senior researcher and professor of regenerative medicine at Wake Forest Baptist.

In a previous study by Christ’s team, research in rats showed that when about 75 percent of the animals’ bladders were removed, they were able to regenerate a complete functional bladder within eight weeks. The current study focused on how the regeneration occurs.

“There is very little data on the mechanisms involved in organ regeneration in mammals,” said Christ. “To our knowledge, bladder regeneration holds a unique position – there is no other mammalian organ capable of this type of regeneration.”

The ability of the liver to grow in size when lobes are removed is sometimes referred to as regeneration, but this is a misnomer, said co-author Bryon Petersen, Ph.D., who was a professor of regenerative medicine at Wake Forest Baptist during the period the research occurred. Instead, through a proliferation of cells, the remaining tissue grows to compensate for the lost size. In contrast, the hallmark of true regeneration is following nature’s “pattern” to exactly duplicate size, form and function, Petersen said.

“If we can understand the bladder’s regenerative process, the hope is that we can prompt the regeneration of other organs and tissues where structure is important – from the intestine and spinal cord to the heart,” said Petersen.

The current study showed that the animals’ bodies responded to injury by increasing the rate at which certain cells divided and grew. The most notable proliferative response occurred initially in the urothelium, the layer of tissue that lines the bladder.

As the proliferative activity in the bladder lining waned, it continued elsewhere: in the fibrous band (lamina propria) that separates the bladder lining from the bladder muscles and in the bladder muscle itself.

The researchers have several theories about how the process works, said Christ. One possibility is that cells in the bladder lining transition and become a type of stem cell that can proliferate throughout the bladder. Other theories are that cells in the bladder lining signal other cells to replicate and that injury prompts stem cells to arrive through the blood stream to repair the bladder damage.

In future studies, the scientists will work to identify the exact regenerative process and will expand the work into mice. The ability to breed mice that lack specific genes will enable the team to explore how genes and proteins may affect the regenerative process and possibly help identify therapies to prompt regeneration.

The research was supported by the National Institutes of Diabetes and Digestive and Kidney Diseases under award number R21DK081832.

Co-researchers were Charles C. Peyton, M.D., lead author, David Burmeister, Ph.D., and Karl-Erik Andersson, M.D., Ph.D., of Wake Forest Baptist. Peterson is now at the University of Florida and an adjunct professor at Wake Forest Baptist.

Media Contacts: Karen Richardson, krchrdsn@wakehealth.edu, (336) 716-4453 or Main Number (336) 716-4587.

About the Wake Forest Institute for Regenerative Medicine
The Wake Forest Institute for Regenerative Medicine (www.wfirm.org) is dedicated to the discovery, development and clinical translation of regenerative medicine technologies. Institute scientists were the first in the world to engineer a replacement organ in the laboratory that was successfully implanted in patients. The institute has used biomaterials alone, cell therapies, and engineered tissues and organs to treatment patients with injury or disease. The Institute is based at Wake Forest Baptist Medical Center (www.wakehealth.edu), a fully integrated academic medical center located in Winston-Salem, N.C. The institution comprises the medical education and research components of Wake Forest School of Medicine, the integrated clinical structure and consumer brand Wake Forest Baptist Health, which includes North Carolina Baptist Hospital and Brenner Children’s Hospital, the commercialization of research discoveries through the Piedmont Triad Research Park, as well as a network of affiliated community-based hospitals, physician practices, outpatient services and other medical facilities.

Karen Richardson | Newswise Science News
Further information:
http://www.wakehealth.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>