Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Mammal Model of Bladder Regeneration

15.10.2012
While it is well known that starfish, zebrafish and salamanders can re-grow damaged limbs, scientists understand very little about the regenerative capabilities of mammals.

Now, researchers at Wake Forest Baptist Medical Center’s Institute for Regenerative Medicine report on the regenerative process that enables rats to re-grow their bladders within eight weeks.

In PLOS ONE, a peer-reviewed, online publication, the scientists characterize this unique model of bladder regeneration with the goal of applying what they learn to human patients.

“A better understanding of the regenerative process at the molecular and cellular level is a key to more rapid progress in applying regenerative medicine to help patients,” said George Christ, Ph.D., senior researcher and professor of regenerative medicine at Wake Forest Baptist.

In a previous study by Christ’s team, research in rats showed that when about 75 percent of the animals’ bladders were removed, they were able to regenerate a complete functional bladder within eight weeks. The current study focused on how the regeneration occurs.

“There is very little data on the mechanisms involved in organ regeneration in mammals,” said Christ. “To our knowledge, bladder regeneration holds a unique position – there is no other mammalian organ capable of this type of regeneration.”

The ability of the liver to grow in size when lobes are removed is sometimes referred to as regeneration, but this is a misnomer, said co-author Bryon Petersen, Ph.D., who was a professor of regenerative medicine at Wake Forest Baptist during the period the research occurred. Instead, through a proliferation of cells, the remaining tissue grows to compensate for the lost size. In contrast, the hallmark of true regeneration is following nature’s “pattern” to exactly duplicate size, form and function, Petersen said.

“If we can understand the bladder’s regenerative process, the hope is that we can prompt the regeneration of other organs and tissues where structure is important – from the intestine and spinal cord to the heart,” said Petersen.

The current study showed that the animals’ bodies responded to injury by increasing the rate at which certain cells divided and grew. The most notable proliferative response occurred initially in the urothelium, the layer of tissue that lines the bladder.

As the proliferative activity in the bladder lining waned, it continued elsewhere: in the fibrous band (lamina propria) that separates the bladder lining from the bladder muscles and in the bladder muscle itself.

The researchers have several theories about how the process works, said Christ. One possibility is that cells in the bladder lining transition and become a type of stem cell that can proliferate throughout the bladder. Other theories are that cells in the bladder lining signal other cells to replicate and that injury prompts stem cells to arrive through the blood stream to repair the bladder damage.

In future studies, the scientists will work to identify the exact regenerative process and will expand the work into mice. The ability to breed mice that lack specific genes will enable the team to explore how genes and proteins may affect the regenerative process and possibly help identify therapies to prompt regeneration.

The research was supported by the National Institutes of Diabetes and Digestive and Kidney Diseases under award number R21DK081832.

Co-researchers were Charles C. Peyton, M.D., lead author, David Burmeister, Ph.D., and Karl-Erik Andersson, M.D., Ph.D., of Wake Forest Baptist. Peterson is now at the University of Florida and an adjunct professor at Wake Forest Baptist.

Media Contacts: Karen Richardson, krchrdsn@wakehealth.edu, (336) 716-4453 or Main Number (336) 716-4587.

About the Wake Forest Institute for Regenerative Medicine
The Wake Forest Institute for Regenerative Medicine (www.wfirm.org) is dedicated to the discovery, development and clinical translation of regenerative medicine technologies. Institute scientists were the first in the world to engineer a replacement organ in the laboratory that was successfully implanted in patients. The institute has used biomaterials alone, cell therapies, and engineered tissues and organs to treatment patients with injury or disease. The Institute is based at Wake Forest Baptist Medical Center (www.wakehealth.edu), a fully integrated academic medical center located in Winston-Salem, N.C. The institution comprises the medical education and research components of Wake Forest School of Medicine, the integrated clinical structure and consumer brand Wake Forest Baptist Health, which includes North Carolina Baptist Hospital and Brenner Children’s Hospital, the commercialization of research discoveries through the Piedmont Triad Research Park, as well as a network of affiliated community-based hospitals, physician practices, outpatient services and other medical facilities.

Karen Richardson | Newswise Science News
Further information:
http://www.wakehealth.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>