Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify a surprising new source of cancer stem cells

12.04.2011
FINDINGS: Certain differentiated cells in breast tissue can spontaneously convert to a stem-cell-like state, according to Whitehead Institute researchers. Until now, scientific dogma has stated that differentiation is a one-way path; once cells specialize, they cannot return to the flexible stem-cell state on their own. These findings hold true for normal mammary cells as well as for breast cancer cells.

RELEVANCE: These findings may redefine how researchers view cancer stem cells – the cells capable of seeding new tumors at primary and distant sites in the body. Therapies that specifically target cancer stem cells are currently being investigated in the belief that eliminating cancer stem cells could prevent tumor recurrence and metastasis.

However, if cancerous, more differentiated cells can switch between the differentiated and stem-cell states, the more differentiated cancer cells might provide an endless source of new cancer stem cells. In the longer term, the observed behavior may also hold promise for degenerative disease therapy by allowing the derivation of patient specific adult stem cells without genetically altering such cells.

Whitehead Institute researchers have discovered that a differentiated cell type found in breast tissue can spontaneously convert to a stem-cell-like state, the first time such behavior has been observed in mammalian cells. These results refute scientific dogma, which states that differentiation is a one-way path; once cells specialize, they cannot return to the flexible stem-cell state on their own.

This surprising finding, published online this week in the Proceedings of the National Academy of Sciences (PNAS), may have implications for the development of cancer therapeutics, particularly those aimed at eradicating cancer stem cells.

"It may be that if one eliminates the cancer stem cells within a tumor through some targeted agent, some of the surviving non-stem tumor cells will generate new cancer stem cells through spontaneous de-differentiation," says Whitehead Founding Member Robert Weinberg. Cancer stem cells are uniquely capable of reseeding tumors at both primary and distant sites in the body.

During differentiation, less-specialized stem cells mature into many different cell types with defined functions. These differentiated cells work together to form tissues and organs. In breast tissue, for example, differentiated basal cells and luminal cells combine to form milk ducts.

While analyzing cells from human breast tissue, Christine Chaffer, who is a postdoctoral researcher in the Weinberg lab and first author of the PNAS paper, observed a small number of living basal cells floating freely in the tissue culture medium.

Intrigued by the cells' unusual behavior, Chaffer conducted further targeted investigations, including injection of the floating basal cells into mice. After 12 weeks she found that the injected basal cells gave rise to milk duct-like structures containing both basal and luminal cells—a clear indication that the floating cells had de-differentiated into stem-like cells.

Until now, no one has shown that differentiated mammalian cells, like these basal cells, have the ability to spontaneously revert to the stem-like state (a behavior described as plasticity).

To see if basal cells could become cancer stem cells, Chaffer inserted cancer-causing genes into the cells. When these transformed cells were injected into mice, the resulting tumors were found to include a cancer stem cell population that descended from the original injected basal (more differentiated) cells. These results indicate that basal cells in breast cancer tumors can serve as a previously unidentified source of cancer stem cells.

As research for new cancer therapies has recently focused on eliminating cancer stem cells, Weinberg cautions that the plasticity seen in these basal cells suggests a more complicated scenario than previously thought.

"Future drug therapies that are targeted against cancer will need to eliminate the cancer stem cells and, in addition, get rid of the non-stem cells in tumors – both populations must be removed," says Weinberg, who is also a professor of biology at MIT. "Knocking out one or the other is unlikely to suffice to generate a durable clinical response."

Chaffer is now focusing on what actually prompts these flexible cells to de-differentiate, and in the case of cancer cells, how to stop the cells from converting into cancer stem cells.

"This plasticity can occur naturally, and it seems that the trigger may be a physiological mechanism for restoring a pool of stem cells," says Chaffer. "We believe that certain cells are more susceptible to such a trigger and therefore to conversion from a differentiated to a stem-like state, and that this process occurs more frequently in cancerous cells."

In the case of normal epithelial cells, the observed behavior may also allow patient specific adult stem cells to be derived without genetic manipulation, holding promise for degenerative disease therapy.

This research was supported by the National Health and Medical Research Council of Australia, National Institutes of Health (NIH), Massachusetts Institute of Technology's Ludwig Center for Molecular Oncology, the Breast Cancer Research Foundation, and a Department of Defense (DoD) Breast Cancer Research Program (BCRP) Idea Award.

Written by Nicole Giese

Robert Weinberg's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology and Director of the MIT/Ludwig Center for Molecular Oncology.

Full Citation: "Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state" Christine L. Chaffer (1,2), Ines Brueckmann (1), Christina Scheel (1,2), Alicia J. Kaestli (1), Paul A. Wiggins (1), Leonardo O. Rodrigues (1,2), Mary Brooks(1,2), Ferenc Reinhardt (1,2), Ying Su (3), Kornelia Polyak (3), Lisa M. Arendt (4,5), Charlotte Kuperwasserd (5), Brian Bierie (1,2), and Robert A. Weinberg (1,2,6)

1. Whitehead Institute for Biomedical Research, Cambridge, MA 02142
2. Ludwig MIT Center for Molecular Oncology, Cambridge, MA 02139
3. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
4. Department of Anatomy and Cellular Biology, Sackler School, Tufts University School of Medicine, Boston, MA 02111
5. Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111;

6. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139

Nicole Giese | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>