Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find a Molecular Clue to the Complex Mystery of Auxin Signaling in Plants

25.03.2014

Interaction domain on proteins that modulate this potent hormone allows them to stack back-to-front like button magnets

Wikipedia lists 65 adjectives that botanists use to describe the shapes of plant leaves. In English (rather than Latin) they mean the leaf is lance-shaped, spear-shaped, kidney-shaped, diamond shaped, arrow-head-shaped, egg-shaped, circular, spoon-shaped , heart-shaped, tear-drop-shaped or sickle-shaped — among other possibilities.


Strader Lab

Graduate student David Korasick commuted between the Strader Lab, which specializes in genetics, and the Jez Lab, which has expertise in structural biology, to learn how plants control the effects of the master hormone auxin.

How does the plant “know” how to make these shapes? The answer is by controlling the distribution of a plant hormone called auxin, which determines the rate at which plant cells divide and lengthen.

But how can one molecule make so many different patterns? Because the hormone’s effects are mediated by the interplay between large families of proteins that either step on the gas or put on the brake when auxin is around.

In recent years as more and more of these proteins were discovered, the auxin signaling machinery began to seem baroque to the point of being unintelligible.

Now the Strader and Jez labs at Washington University in St. Louis have made a discovery about one of the proteins in the auxin signaling network that may prove key to understanding the entire network.

In the March 24 issue of the Proceedings of the National Academy of Sciences they explain that they were able to crystallize a key protein called a transcription factor and work out its structure. The interaction domain of the protein, they learned, folds into a flat paddle with a positively charged face and a negatively charged face. These faces allow the proteins to snap together like magnets, forming long chains, or oligomers.

We have some evidence that proteins chain in plant cells as well as in solution, said senior author Lucia Strader, PhD, assistant professor of biology and an auxin expert. By varying the length of these chains, plants may fine-tune the response of individual cells to auxin to produce detailed patterns such as the toothed lobes of the cilantro leaf.

Combinatorial explosion
Sculpting leaves is just one of many roles auxin plays in plants. Among other things the hormone helps make plants bend toward the light, roots grow down and shoots grow up, fruits develop and fruits fall off.

“The most potent form of the hormone is indole-3-acetic acid, abbreviated IAA, and my lab members joke that IAA really stands for Involved in Almost Everything,” Strader said.

The backstory here is that whole families of proteins intervene between auxin and genes that respond to auxin by making proteins. In the model plant Aribidopsis thaliana these include 5 transcription factors that activate genes when auxin is present (called ARFs) and 29 repressor proteins that block the transcription factors by binding to them (Aux/IAA proteins). A third family marks repressors for destruction.

“Different combinations of these proteins are present in each cell,” said Strader. “On top of that, some combinations interact more strongly than others and some of the transcription factors also interact with one another.”

In an idle moment David Korasick, a graduate fellow in the Strader and Jez labs and first author on the PNAS article, did a back-of-the-envelope calculation to put a number on the complexity of the system they were trying to understand. From a strictly mathematical point of view there are 3,828 possible combinations of the auxin-related Arabidopsis proteins. That is assuming interactions involve only one of each type of protein; if multiples are possible, the number, of course, explodes.

To make any headway, Strader said, we had a better understanding of how these proteins interact. The rule in protein chemistry is the opposite of the one in design: instead of form following function, function follows form.

So to figure out a protein’s form — the way it folds in space — they turned to the Jez lab, which specializes in protein crystallography, essentially a form of high-resolution microscopy that allows protein structures to be visualized at the atomic level.

Korasick had the job of crystallizing ARF7, a transcription factor that helps, Arabidopsis bend toward the light. With the help of Joseph Jez, PhD, associate professor of biology, Corey Westfall, and Soon Goo Lee), Korasick cut “floppy bits” off the protein that might have made it hard to crystallize, leaving just the part of the protein where it interacts with repressor molecules.

After he had that construct, crystallization was remarkably fast. He set up his first drops in solution wells on the 4th of July. The protein crystallized with a fuss, and he ran the crystals up to the Advanced Photon Source at the Argonne National Laboratory outside Chicago. By August 1 he had the diffraction data he needed to solve the protein’s structure.

Surprise, surprise
The previous model for the interaction between a repressor and a transcription factor – a model that had stood for 15 years, Strader said– was that the repressor lay flat on the transcription factor, two domains on the repressor matching up with the corresponding two domains on the transcription factor.

The structural model Korasick developed showed that the two domains fold together to form a single domain, called a PB1 domain. A PB1 domain is a protein interaction module that can be found in animals and fungi as well as plants.

The repressor proteins, which are predicted to have PB1 domains identical to that of the ARF transcription factor, then stick to one or the other side of the transcription factor’s PB1 domain, preventing it from doing its job. Experiments showed that there had to be a repressor protein stuck to both faces of the transcription factor’s PB1 domain to repress the activity of auxin.

This means the model, which pairs a single repressor protein with a single transcription factor, is wrong, Strader said.

“Nor can we limit the interactions to just two,” she said. “It could be hundreds for all we know.“

In Korasick’s crystal five of the ARF7 PB1 domains stuck to one another, forming a pentamer.

“I like to think of the PB1 domains as magnets, “ Strader said. “Like magnets, they can stick together, back-to-front, to form long chains.”

“But we have to put an asterisk next to that,” Korasick said, “because it’s possible it’s an artifact of crystallography and doesn’t work that way in living plants.“

But both Strader and Korasick suspect that it does. Strader points out that the complexity of the auxin signaling system has increased over evolutionary time as plants became fancier. A simple plant like the moss Physcomitrella patens has fewer signaling proteins than a complicated plant like soybean.

“Probably what that’s saying is that it’s really, really important for a plant to be able to modulate auxin signaling, to have the right amount in each cell, to balance positive and negative growth,” Korasick said.

“The difference between plants and animals,” said Strader, “is that plants have rigid cell walls. So when a plant cell decides to divide itself or length itself, that’s a permanent decision, which is why it’s so tightly controlled.“

Diana Lutz | newswise
Further information:
http://www.wustl.edu

Further reports about: Auxin IAA Molecular Mystery Plants Signaling domains factors hormone proteins transcription

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>