Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find a Molecular Clue to the Complex Mystery of Auxin Signaling in Plants

25.03.2014

Interaction domain on proteins that modulate this potent hormone allows them to stack back-to-front like button magnets

Wikipedia lists 65 adjectives that botanists use to describe the shapes of plant leaves. In English (rather than Latin) they mean the leaf is lance-shaped, spear-shaped, kidney-shaped, diamond shaped, arrow-head-shaped, egg-shaped, circular, spoon-shaped , heart-shaped, tear-drop-shaped or sickle-shaped — among other possibilities.


Strader Lab

Graduate student David Korasick commuted between the Strader Lab, which specializes in genetics, and the Jez Lab, which has expertise in structural biology, to learn how plants control the effects of the master hormone auxin.

How does the plant “know” how to make these shapes? The answer is by controlling the distribution of a plant hormone called auxin, which determines the rate at which plant cells divide and lengthen.

But how can one molecule make so many different patterns? Because the hormone’s effects are mediated by the interplay between large families of proteins that either step on the gas or put on the brake when auxin is around.

In recent years as more and more of these proteins were discovered, the auxin signaling machinery began to seem baroque to the point of being unintelligible.

Now the Strader and Jez labs at Washington University in St. Louis have made a discovery about one of the proteins in the auxin signaling network that may prove key to understanding the entire network.

In the March 24 issue of the Proceedings of the National Academy of Sciences they explain that they were able to crystallize a key protein called a transcription factor and work out its structure. The interaction domain of the protein, they learned, folds into a flat paddle with a positively charged face and a negatively charged face. These faces allow the proteins to snap together like magnets, forming long chains, or oligomers.

We have some evidence that proteins chain in plant cells as well as in solution, said senior author Lucia Strader, PhD, assistant professor of biology and an auxin expert. By varying the length of these chains, plants may fine-tune the response of individual cells to auxin to produce detailed patterns such as the toothed lobes of the cilantro leaf.

Combinatorial explosion
Sculpting leaves is just one of many roles auxin plays in plants. Among other things the hormone helps make plants bend toward the light, roots grow down and shoots grow up, fruits develop and fruits fall off.

“The most potent form of the hormone is indole-3-acetic acid, abbreviated IAA, and my lab members joke that IAA really stands for Involved in Almost Everything,” Strader said.

The backstory here is that whole families of proteins intervene between auxin and genes that respond to auxin by making proteins. In the model plant Aribidopsis thaliana these include 5 transcription factors that activate genes when auxin is present (called ARFs) and 29 repressor proteins that block the transcription factors by binding to them (Aux/IAA proteins). A third family marks repressors for destruction.

“Different combinations of these proteins are present in each cell,” said Strader. “On top of that, some combinations interact more strongly than others and some of the transcription factors also interact with one another.”

In an idle moment David Korasick, a graduate fellow in the Strader and Jez labs and first author on the PNAS article, did a back-of-the-envelope calculation to put a number on the complexity of the system they were trying to understand. From a strictly mathematical point of view there are 3,828 possible combinations of the auxin-related Arabidopsis proteins. That is assuming interactions involve only one of each type of protein; if multiples are possible, the number, of course, explodes.

To make any headway, Strader said, we had a better understanding of how these proteins interact. The rule in protein chemistry is the opposite of the one in design: instead of form following function, function follows form.

So to figure out a protein’s form — the way it folds in space — they turned to the Jez lab, which specializes in protein crystallography, essentially a form of high-resolution microscopy that allows protein structures to be visualized at the atomic level.

Korasick had the job of crystallizing ARF7, a transcription factor that helps, Arabidopsis bend toward the light. With the help of Joseph Jez, PhD, associate professor of biology, Corey Westfall, and Soon Goo Lee), Korasick cut “floppy bits” off the protein that might have made it hard to crystallize, leaving just the part of the protein where it interacts with repressor molecules.

After he had that construct, crystallization was remarkably fast. He set up his first drops in solution wells on the 4th of July. The protein crystallized with a fuss, and he ran the crystals up to the Advanced Photon Source at the Argonne National Laboratory outside Chicago. By August 1 he had the diffraction data he needed to solve the protein’s structure.

Surprise, surprise
The previous model for the interaction between a repressor and a transcription factor – a model that had stood for 15 years, Strader said– was that the repressor lay flat on the transcription factor, two domains on the repressor matching up with the corresponding two domains on the transcription factor.

The structural model Korasick developed showed that the two domains fold together to form a single domain, called a PB1 domain. A PB1 domain is a protein interaction module that can be found in animals and fungi as well as plants.

The repressor proteins, which are predicted to have PB1 domains identical to that of the ARF transcription factor, then stick to one or the other side of the transcription factor’s PB1 domain, preventing it from doing its job. Experiments showed that there had to be a repressor protein stuck to both faces of the transcription factor’s PB1 domain to repress the activity of auxin.

This means the model, which pairs a single repressor protein with a single transcription factor, is wrong, Strader said.

“Nor can we limit the interactions to just two,” she said. “It could be hundreds for all we know.“

In Korasick’s crystal five of the ARF7 PB1 domains stuck to one another, forming a pentamer.

“I like to think of the PB1 domains as magnets, “ Strader said. “Like magnets, they can stick together, back-to-front, to form long chains.”

“But we have to put an asterisk next to that,” Korasick said, “because it’s possible it’s an artifact of crystallography and doesn’t work that way in living plants.“

But both Strader and Korasick suspect that it does. Strader points out that the complexity of the auxin signaling system has increased over evolutionary time as plants became fancier. A simple plant like the moss Physcomitrella patens has fewer signaling proteins than a complicated plant like soybean.

“Probably what that’s saying is that it’s really, really important for a plant to be able to modulate auxin signaling, to have the right amount in each cell, to balance positive and negative growth,” Korasick said.

“The difference between plants and animals,” said Strader, “is that plants have rigid cell walls. So when a plant cell decides to divide itself or length itself, that’s a permanent decision, which is why it’s so tightly controlled.“

Diana Lutz | newswise
Further information:
http://www.wustl.edu

Further reports about: Auxin IAA Molecular Mystery Plants Signaling domains factors hormone proteins transcription

More articles from Life Sciences:

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

nachricht Sun protection for plants - Plant substances can protect plants against harmful UV radiation
22.08.2016 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

 
Latest News

New Ideas for the Shipping Industry

24.08.2016 | Event News

Lehigh engineer discovers a high-speed nano-avalanche

24.08.2016 | Physics and Astronomy

Streamlining accelerated computing for industry

24.08.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>