Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists engineer strain of MERS coronavirus for use in a vaccine

10.09.2013
Scientists have developed a strain of the Middle East respiratory syndrome coronavirus (MERS-CoV) that could be used as a vaccine against the disease, according to a study to be published in mBio®, the online open-access journal of the American Society for Microbiology.

The mutant MERS virus, rMERS-CoV-ΔE, has a mutation in its envelope protein that makes it capable of infecting a cell and replicating its genetic material, but deprives it of the ability to spread to other tissues and cause disease.

The authors say once additional safe guards are engineered into the virus, it could be used as the basis of a safe and effective live-attenuated vaccine against MERS.

"Our achievement was a combination of synthetic biology and genetic engineering," says co-author Luis Enjuanes of The Autonomous University of Madrid (Universidad Autónoma de Madrid).

"The injected vaccine will only replicate in a reduced number of cells and produce enough antigen to immunize the host," he says, and it cannot infect other people, even those in close contact with a vaccinated person.

Since MERS was first identified in June 2012, the World Health Organization has been notified of 108 cases of infection, including 50 deaths. Although the total number of cases is still relatively small, the case fatality rate and the spread of the virus to countries beyond the Middle East is alarming to public health officials. If the virus evolves the ability to transmit easily from person to person, a much more widespread epidemic is possible. Diagnostic assays and antiviral therapies for MERS have been described, but reliable vaccines have not yet been developed.

Enjuanes and his team applied what they had learned from 30 years of research on the molecular biology of coronaviruses to synthesize an infectious cDNA clone of the MERS-CoV genome based on a published sequence. They inserted the viral cDNA chromosome into a bacterial artificial chromosome, and mutated several of its genes, one by one, to study the effects on the virus' ability to infect, replicate, and re-infect cultured human cells.

Mutations that disabled accessory genes 3, 4a, 4b and 5 did not seem to hinder the virus: mutant viruses had similar growth rates as the wild-type virus, indicating that the mutations do not disable the virus enough to deploy the mutants in a vaccine. Mutations in the envelope protein (E protein), on the other hand, enabled the virus to replicate its genetic material, but prevented the virus from propagating, or infecting nearby cells.

A large amount of the rMERS-CoV-ΔE virus would be needed for a live attenuated MERS vaccine. A virus that can't propagate itself would be unable to grow the volume needed without help. Enjuanes says they provided the virus with a supplemental form E protein.

"To grow the virus, we create what are called 'packaging cells' that express the E protein missing in the virus. The gene to encode this protein is integrated in the cell chromosomes and will not mix with the viral genes. Therefore, in these cells, and only within them, the virus will grow by borrowing the E protein produced by the cell," says Enjuanes. "When the virus in administered to a person for vaccination, this person will not be able to provide the E protein to the defective virus," so the virus will die off after producing antigens to train the human immune system to fight a MERS-CoV infection.

Enjuanes says rMERS-CoV-ΔE is a very promising vaccine candidate, but more work remains before they can start clinical trials. He says the mutation in the E protein that prevents the virus from propagating represents one safe guard, but the US Food and Drug Administration requires that a recombinant live attenuated vaccine strains include at least three safe guards to ensure the virus doesn't revert easily back to its virulent form. His group is currently working on introducing other disabling mutations in genes that are located in regions of the virus' genome that are far away from the E protein gene to ensure the virus cannot revert back to virulence in a single recombination event.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org
http://mbio.asm.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>