Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how rapamycin slows cell growth

24.05.2013
University of Montreal researchers have discovered a novel molecular mechanism that can potentially slow the progression of some cancers and other diseases of abnormal growth. In the May 23 edition of the prestigious journal Cell, scientists from the University of Montreal explain how they found that the anti-cancer and anti-proliferative drug rapamycin slows down or prevents cells from dividing.
“Cells normally monitor the availability of nutrients and will slow down or accelerate their growth and division accordingly. A key monitor of nutrients is a protein called the Target of Rapamycin (TOR), but we do not know the details of how this protein feeds signals downstream to control growth” says Dr. Stephen Michnick, senior author and a University of Montreal biochemistry professor. He adds that, “we were surprised to find that TOR hooks up to a circuit that controls the exit of cells from division which in turn modulates the RNA message that codes for a key cell cycle regulator called B-cyclin”.

In collaboration with Daniel Zenklusen, also a University of Montreal biochemistry professor and lead author and doctoral candidate Vincent Messier, they discovered that when cells are starved for nutrients TOR sends a signal to shut down production of a chemical message in the form of RNA to synthesize B cyclin ”, Dr. Michnick explained. “We also found that TOR acts through a previously unforeseen intermediary, a protein that makes small chemical modifications to proteins normally stabilizing B cyclin RNA ”, he added. “We have known that starvation and a drug that mimics starvation, rapamycin, affects B cyclin synthesis, but we didn't know how. Our studies now point to one mechanism”, noted Dr. Messier. Dr. Zenklusen emphasized that, "this is an important finding with implications for our understanding on how the normal organism interprets its environment to control growth and it was a surprise to find a mechanism that works through the RNA that codes for a regulatory protein”.
Dr. Michnick adds, “rapamycin is a promising therapy for some cancers and other devastating maladies such as the rare lung disease called lymphangioleiomyomatosis (LAM). It remains to be seen whether the pathway we have discovered might be an alternative target for the development of therapeutics against these diseases.”

Notes:
The University of Montreal is known officially as Université de Montréal. The research involved in the study “A Nutrient-Responsive Pathway that Determines M Phase Timing through Control of B-Cyclin mRNA Stability” was financed by Canadian Institutes of Health Research (CIHR) grants MOP-GMX-152556 and MOP-GMX- 231013 and NSERC of Canada grant 194582 to Dr. Michnick and CIHR grant MOP-BMB-232642 and the Canadian Foundation for Innovation to Dr. Zenklusen. Dr. Zenklusen holds a FRSQ Chercheur Boursier Junior I.
For more information:

William Raillant-Clark International
Press Attaché University of Montreal (officially Université de Montréal)
Tel: 514-343-7593
w.raillant-clark@umontreal.ca
@uMontreal_News

Julie Gazaille | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>