Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how rapamycin slows cell growth

24.05.2013
University of Montreal researchers have discovered a novel molecular mechanism that can potentially slow the progression of some cancers and other diseases of abnormal growth. In the May 23 edition of the prestigious journal Cell, scientists from the University of Montreal explain how they found that the anti-cancer and anti-proliferative drug rapamycin slows down or prevents cells from dividing.
“Cells normally monitor the availability of nutrients and will slow down or accelerate their growth and division accordingly. A key monitor of nutrients is a protein called the Target of Rapamycin (TOR), but we do not know the details of how this protein feeds signals downstream to control growth” says Dr. Stephen Michnick, senior author and a University of Montreal biochemistry professor. He adds that, “we were surprised to find that TOR hooks up to a circuit that controls the exit of cells from division which in turn modulates the RNA message that codes for a key cell cycle regulator called B-cyclin”.

In collaboration with Daniel Zenklusen, also a University of Montreal biochemistry professor and lead author and doctoral candidate Vincent Messier, they discovered that when cells are starved for nutrients TOR sends a signal to shut down production of a chemical message in the form of RNA to synthesize B cyclin ”, Dr. Michnick explained. “We also found that TOR acts through a previously unforeseen intermediary, a protein that makes small chemical modifications to proteins normally stabilizing B cyclin RNA ”, he added. “We have known that starvation and a drug that mimics starvation, rapamycin, affects B cyclin synthesis, but we didn't know how. Our studies now point to one mechanism”, noted Dr. Messier. Dr. Zenklusen emphasized that, "this is an important finding with implications for our understanding on how the normal organism interprets its environment to control growth and it was a surprise to find a mechanism that works through the RNA that codes for a regulatory protein”.
Dr. Michnick adds, “rapamycin is a promising therapy for some cancers and other devastating maladies such as the rare lung disease called lymphangioleiomyomatosis (LAM). It remains to be seen whether the pathway we have discovered might be an alternative target for the development of therapeutics against these diseases.”

Notes:
The University of Montreal is known officially as Université de Montréal. The research involved in the study “A Nutrient-Responsive Pathway that Determines M Phase Timing through Control of B-Cyclin mRNA Stability” was financed by Canadian Institutes of Health Research (CIHR) grants MOP-GMX-152556 and MOP-GMX- 231013 and NSERC of Canada grant 194582 to Dr. Michnick and CIHR grant MOP-BMB-232642 and the Canadian Foundation for Innovation to Dr. Zenklusen. Dr. Zenklusen holds a FRSQ Chercheur Boursier Junior I.
For more information:

William Raillant-Clark International
Press Attaché University of Montreal (officially Université de Montréal)
Tel: 514-343-7593
w.raillant-clark@umontreal.ca
@uMontreal_News

Julie Gazaille | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>