Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Key to Effective Meningitis Vaccine

10.03.2011
A study conducted by Children’s Hospital & Research Center Oakland and University of Massachusetts Medical Center scientists identifies a new mutant vaccine antigen for Neisseria meningitidis (also called meningococcus) that has the potential to improve vaccine development against dangerous bacterial infections including meningitis.

The study, authored by Children’s Hospital Oakland Research Institute (CHORI) scientists Dan Granoff, MD, and Peter Beernink, PhD, and colleagues at the University of Massachusetts Medical Center, Worcester MA, will be featured in the March 15, 2011 issue of the Journal of Immunology (published online February 16, 2011).

“It’s really quite gratifying to have a study like this that has direct translation into making better vaccines against infections, especially meningococcal disease,” said Dr. Granoff, Director of CHORI’s Center for Immunobiology and Vaccine Development. “This deadly disease affects hundreds of thousands of children throughout the world. Almost no other infection can kill a previously healthy child as fast as the meningococcus.”

Meningococci are bacteria responsible for causing meningitis and severe bloodstream infections. Young children and teenagers are particularly vulnerable. Even with the best treatment, 10 percent of those infected will not survive. About 20 percent of those who survive are left with long-term medical problems including loss of hearing, chronic seizures, and amputation of limbs.

While there are vaccines available for prevention of certain strains of the bacteria, there is no vaccine against “group B” strains, which account for approximately 40 percent of cases in the United States. Currently, there are two vaccines targeting group B strains in development. These vaccines utilize a novel antigen called factor H-binding protein (fHbp) to stimulate human immune responses against the bacteria. The fHbp antigen in the vaccines binds with human factor H (fH), a protein normally present in the bloodstream.

Dr. Granoff’s research, however, demonstrates that a simple change in the protein can greatly improve the efficacy of the vaccines. Because fH in animals differs from that in humans, genetically engineered mice were created in order to investigate the effect of fH binding on the fHbp vaccines.

A traditional animal study would not be able to capture the effects of this because fH in animals is slightly different than it is in humans. Dr. Granoff and his team got some help from genetically engineered mice.

When the mice with human fH (created by Sanjay Ram, MD, and Peter Rice, MD, at the University of Massachusetts in Worcester) were immunized, the fHbp antigen vaccine worked well in normal mice whose fH didn’t bind to the vaccine. But in the mice with human fH, the protective ability of the vaccine dropped four- to eight-fold. The more human fH a mouse had, the worse the level of protection the vaccine provided.

The same study, however, demonstrated a solution: Dr. Granoff and his colleagues showed that using an fHbp antigen with a slight mutation resulted in significant increases in protection.

“This mutant antigen has just one amino acid difference between it and the fHbp in the current vaccines, but that difference means that it no longer binds to human fH, and that resulted in much higher protective responses,” said Dr. Granoff.

In addition to significantly improving the current meningitis vaccines, the study also provides proof of principle that has the potential to be applied to vaccines against other bacteria that also utilize fH binding, like pneumococcus and Bordatella.

“Our study suggests that while a vaccine that actually targets fH binding proteins offers a unique opportunity to prevent disease, you probably need to develop forms of the vaccine that don’t bind to the host protein, said Dr. Granoff. “What we need to be looking for are mutants that make the antigen look like the fH binding proteins, but that remove the binding function.”

The study provides a solid foundation for the development of second generation meningococcal vaccines while also providing an approach for creating highly effective vaccines against other infectious bacteria.

About Children’s Hospital & Research Center Oakland
Children’s Hospital & Research Center Oakland is Northern California’s only independent not-for-profit regional medical center for children. Children’s Hospital Oakland is a national leader in many pediatric specialties and sub-specialties including hematology/oncology, neonatology, cardiology, orthopedics, sports medicine, and neurosurgery. The hospital is one of only two solely designated California Level 1 pediatric trauma centers with the largest pediatric inpatient critical care unit in the region. Children’s Hospital has 190 licensed beds, 201 hospital-based physicians in 30 specialties, more than 2,700 employees, and an annual operating budget of more than $350 million. Children’s is also a premier teaching hospital with an outstanding pediatric residency program and unique pediatric subspecialty fellowship programs.

Children’s research program, Children’s Hospital Oakland Research Institute (CHORI), is internationally renowned for taking state-of-the-art basic and clinical research and translating it into interventions for treating and preventing human diseases. CHORI has 300 members of its investigative staff, a budget of about $50 million, and is ranked among the nation’s top 10 research centers in National Institutes of Health funding to children’s hospitals. For more information, go to www.childrenshospitaloakland.org and www.chori.org.

Erin Goldsmith | Newswise Science News
Further information:
http://www.chori.org

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>