Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Key to Effective Meningitis Vaccine

10.03.2011
A study conducted by Children’s Hospital & Research Center Oakland and University of Massachusetts Medical Center scientists identifies a new mutant vaccine antigen for Neisseria meningitidis (also called meningococcus) that has the potential to improve vaccine development against dangerous bacterial infections including meningitis.

The study, authored by Children’s Hospital Oakland Research Institute (CHORI) scientists Dan Granoff, MD, and Peter Beernink, PhD, and colleagues at the University of Massachusetts Medical Center, Worcester MA, will be featured in the March 15, 2011 issue of the Journal of Immunology (published online February 16, 2011).

“It’s really quite gratifying to have a study like this that has direct translation into making better vaccines against infections, especially meningococcal disease,” said Dr. Granoff, Director of CHORI’s Center for Immunobiology and Vaccine Development. “This deadly disease affects hundreds of thousands of children throughout the world. Almost no other infection can kill a previously healthy child as fast as the meningococcus.”

Meningococci are bacteria responsible for causing meningitis and severe bloodstream infections. Young children and teenagers are particularly vulnerable. Even with the best treatment, 10 percent of those infected will not survive. About 20 percent of those who survive are left with long-term medical problems including loss of hearing, chronic seizures, and amputation of limbs.

While there are vaccines available for prevention of certain strains of the bacteria, there is no vaccine against “group B” strains, which account for approximately 40 percent of cases in the United States. Currently, there are two vaccines targeting group B strains in development. These vaccines utilize a novel antigen called factor H-binding protein (fHbp) to stimulate human immune responses against the bacteria. The fHbp antigen in the vaccines binds with human factor H (fH), a protein normally present in the bloodstream.

Dr. Granoff’s research, however, demonstrates that a simple change in the protein can greatly improve the efficacy of the vaccines. Because fH in animals differs from that in humans, genetically engineered mice were created in order to investigate the effect of fH binding on the fHbp vaccines.

A traditional animal study would not be able to capture the effects of this because fH in animals is slightly different than it is in humans. Dr. Granoff and his team got some help from genetically engineered mice.

When the mice with human fH (created by Sanjay Ram, MD, and Peter Rice, MD, at the University of Massachusetts in Worcester) were immunized, the fHbp antigen vaccine worked well in normal mice whose fH didn’t bind to the vaccine. But in the mice with human fH, the protective ability of the vaccine dropped four- to eight-fold. The more human fH a mouse had, the worse the level of protection the vaccine provided.

The same study, however, demonstrated a solution: Dr. Granoff and his colleagues showed that using an fHbp antigen with a slight mutation resulted in significant increases in protection.

“This mutant antigen has just one amino acid difference between it and the fHbp in the current vaccines, but that difference means that it no longer binds to human fH, and that resulted in much higher protective responses,” said Dr. Granoff.

In addition to significantly improving the current meningitis vaccines, the study also provides proof of principle that has the potential to be applied to vaccines against other bacteria that also utilize fH binding, like pneumococcus and Bordatella.

“Our study suggests that while a vaccine that actually targets fH binding proteins offers a unique opportunity to prevent disease, you probably need to develop forms of the vaccine that don’t bind to the host protein, said Dr. Granoff. “What we need to be looking for are mutants that make the antigen look like the fH binding proteins, but that remove the binding function.”

The study provides a solid foundation for the development of second generation meningococcal vaccines while also providing an approach for creating highly effective vaccines against other infectious bacteria.

About Children’s Hospital & Research Center Oakland
Children’s Hospital & Research Center Oakland is Northern California’s only independent not-for-profit regional medical center for children. Children’s Hospital Oakland is a national leader in many pediatric specialties and sub-specialties including hematology/oncology, neonatology, cardiology, orthopedics, sports medicine, and neurosurgery. The hospital is one of only two solely designated California Level 1 pediatric trauma centers with the largest pediatric inpatient critical care unit in the region. Children’s Hospital has 190 licensed beds, 201 hospital-based physicians in 30 specialties, more than 2,700 employees, and an annual operating budget of more than $350 million. Children’s is also a premier teaching hospital with an outstanding pediatric residency program and unique pediatric subspecialty fellowship programs.

Children’s research program, Children’s Hospital Oakland Research Institute (CHORI), is internationally renowned for taking state-of-the-art basic and clinical research and translating it into interventions for treating and preventing human diseases. CHORI has 300 members of its investigative staff, a budget of about $50 million, and is ranked among the nation’s top 10 research centers in National Institutes of Health funding to children’s hospitals. For more information, go to www.childrenshospitaloakland.org and www.chori.org.

Erin Goldsmith | Newswise Science News
Further information:
http://www.chori.org

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>