Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Discover Key to Effective Meningitis Vaccine

A study conducted by Children’s Hospital & Research Center Oakland and University of Massachusetts Medical Center scientists identifies a new mutant vaccine antigen for Neisseria meningitidis (also called meningococcus) that has the potential to improve vaccine development against dangerous bacterial infections including meningitis.

The study, authored by Children’s Hospital Oakland Research Institute (CHORI) scientists Dan Granoff, MD, and Peter Beernink, PhD, and colleagues at the University of Massachusetts Medical Center, Worcester MA, will be featured in the March 15, 2011 issue of the Journal of Immunology (published online February 16, 2011).

“It’s really quite gratifying to have a study like this that has direct translation into making better vaccines against infections, especially meningococcal disease,” said Dr. Granoff, Director of CHORI’s Center for Immunobiology and Vaccine Development. “This deadly disease affects hundreds of thousands of children throughout the world. Almost no other infection can kill a previously healthy child as fast as the meningococcus.”

Meningococci are bacteria responsible for causing meningitis and severe bloodstream infections. Young children and teenagers are particularly vulnerable. Even with the best treatment, 10 percent of those infected will not survive. About 20 percent of those who survive are left with long-term medical problems including loss of hearing, chronic seizures, and amputation of limbs.

While there are vaccines available for prevention of certain strains of the bacteria, there is no vaccine against “group B” strains, which account for approximately 40 percent of cases in the United States. Currently, there are two vaccines targeting group B strains in development. These vaccines utilize a novel antigen called factor H-binding protein (fHbp) to stimulate human immune responses against the bacteria. The fHbp antigen in the vaccines binds with human factor H (fH), a protein normally present in the bloodstream.

Dr. Granoff’s research, however, demonstrates that a simple change in the protein can greatly improve the efficacy of the vaccines. Because fH in animals differs from that in humans, genetically engineered mice were created in order to investigate the effect of fH binding on the fHbp vaccines.

A traditional animal study would not be able to capture the effects of this because fH in animals is slightly different than it is in humans. Dr. Granoff and his team got some help from genetically engineered mice.

When the mice with human fH (created by Sanjay Ram, MD, and Peter Rice, MD, at the University of Massachusetts in Worcester) were immunized, the fHbp antigen vaccine worked well in normal mice whose fH didn’t bind to the vaccine. But in the mice with human fH, the protective ability of the vaccine dropped four- to eight-fold. The more human fH a mouse had, the worse the level of protection the vaccine provided.

The same study, however, demonstrated a solution: Dr. Granoff and his colleagues showed that using an fHbp antigen with a slight mutation resulted in significant increases in protection.

“This mutant antigen has just one amino acid difference between it and the fHbp in the current vaccines, but that difference means that it no longer binds to human fH, and that resulted in much higher protective responses,” said Dr. Granoff.

In addition to significantly improving the current meningitis vaccines, the study also provides proof of principle that has the potential to be applied to vaccines against other bacteria that also utilize fH binding, like pneumococcus and Bordatella.

“Our study suggests that while a vaccine that actually targets fH binding proteins offers a unique opportunity to prevent disease, you probably need to develop forms of the vaccine that don’t bind to the host protein, said Dr. Granoff. “What we need to be looking for are mutants that make the antigen look like the fH binding proteins, but that remove the binding function.”

The study provides a solid foundation for the development of second generation meningococcal vaccines while also providing an approach for creating highly effective vaccines against other infectious bacteria.

About Children’s Hospital & Research Center Oakland
Children’s Hospital & Research Center Oakland is Northern California’s only independent not-for-profit regional medical center for children. Children’s Hospital Oakland is a national leader in many pediatric specialties and sub-specialties including hematology/oncology, neonatology, cardiology, orthopedics, sports medicine, and neurosurgery. The hospital is one of only two solely designated California Level 1 pediatric trauma centers with the largest pediatric inpatient critical care unit in the region. Children’s Hospital has 190 licensed beds, 201 hospital-based physicians in 30 specialties, more than 2,700 employees, and an annual operating budget of more than $350 million. Children’s is also a premier teaching hospital with an outstanding pediatric residency program and unique pediatric subspecialty fellowship programs.

Children’s research program, Children’s Hospital Oakland Research Institute (CHORI), is internationally renowned for taking state-of-the-art basic and clinical research and translating it into interventions for treating and preventing human diseases. CHORI has 300 members of its investigative staff, a budget of about $50 million, and is ranked among the nation’s top 10 research centers in National Institutes of Health funding to children’s hospitals. For more information, go to and

Erin Goldsmith | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>