Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop molecular thermometer for contactless measurement using infrared light

14.06.2017

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM) in Berlin have developed a molecular thermometer. The gemstone ruby served as the source of inspiration.


The molecular ruby in a solid (red) and dissolved (yellow) state can be used for contactless measurement of temperature.

photo/©: Sven Otto, JGU

However, the thermometer developed by the team headed by Professor Katja Heinze at the JGU Institute of Inorganic Chemistry and Analytical Chemistry is a water-soluble molecule, not an insoluble solid. Like a ruby, this molecule contains the element chromium that gives it its red color, which is why it has also been dubbed the molecular ruby.

This molecular ruby can be used to measure temperature in many different environments thanks to its solubility: it can be introduced into liquids, solids, nano-particles, and micelles. Thus, it has potential applications in the fields of the material sciences, biology, and medicine.

Measuring the temperature with the molecular ruby is very straightforward. The relevant site is irradiated with blue light, which is absorbed by the molecular ruby that then emits infrared radiation at two different wavelengths. Depending on the temperature, there is more intense emission of infrared at one of the two wavelengths. The temperature is then determined on the basis of the corresponding ratio of intensity of the two wavelengths.

"Anyone with a simple emission spectrometer can undertake this kind of measurement," explained Sven Otto, a doctoral candidate in Heinze's team. "The molecular ruby works at 100 degrees Celsius just as well as at minus 63 degrees Celsius, that is in a range relevant to everyday practice," added Otto.

The principle of optical ratiometric temperature measurement is not new. However, it was previously impossible to take measurements using only a single type of photoactive agent. To date, scientists always needed two dyes, i.e., one that produced emission dependent on temperature and another reference dye with emission independent of temperature. That made synthesis and calibration a lot more difficult.

"Our molecular ruby, on the other hand, is simply made from inexpensive raw materials and no additional reference substances are required to measure temperature," said Professor Katja Heinze. "It can be employed whenever we want to measure temperature without having to contact the object directly as with a conventional thermometer."

The research findings have been published in a special edition of Chemistry – A European Journal designed to mark the 150th anniversary of the German Chemical Society (GDCh) and featuring contributions from eminent German researchers.

The research work is being funded by the German Research Foundation (DFG) within the framework of, inter alia, the Graduate School of Excellence Materials Science in Mainz (MAINZ). The DFG recently approved a new priority program entitled "Light-controlled reactivity of metal complexes" that is coordinated by Professor Katja Heinze.

Photo:
http://www.uni-mainz.de/bilder_presse/09_anorgchemie_rubin_thermometer.jpg
The molecular ruby in a solid (red) and dissolved (yellow) state can be used for contactless measurement of temperature.
photo/©: Sven Otto, JGU

Publications:
Sven Otto et al.
Thermo-Chromium: A Contactless Optical Molecular Thermometer
Chemistry – A European Journal, 15 May 2017
DOI: 10.1002/chem.201701726
http://onlinelibrary.wiley.com/doi/10.1002/chem.201701726/abstract
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3765/homepage/2111_gdc...

Sven Otto et al.
[Cr(ddpd)2]3+: A Molecular, Water-Soluble, Highly NIR-Emissive Ruby Analogue
Angewandte Chemie International Edition, 12 August 2015
DOI: 10.1002/anie.201504894
http://onlinelibrary.wiley.com/doi/10.1002/anie.201504894/abstract

Contact and further information:
Professor Dr. Katja Heinze
Institute of Inorganic Chemistry and Analytical Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-25886
fax +49 6131 39-27277
e-mail: katja.heinze@uni-mainz.de
https://www.ak-heinze.chemie.uni-mainz.de/

Weitere Informationen:

http://www.bundesgraduiertenschule-gruppe-mainz.uni-mainz.de/ – Graduate School of Excellence Materials Science in Mainz ;
http://www.uni-mainz.de/presse/aktuell/1212_ENG_HTML.php – press release "Johannes Gutenberg University Mainz to coordinate new DFG priority program in photochemistry", 25 April 2017 ;
http://www.uni-mainz.de/presse/17824_ENG_HTML.php – press release "Katja Heinze receives research award for intelligent food packaging with freshness indicator", 5 December 2014

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Researchers report in "Nature Chemistry" on cell-permeable nanobodies
19.07.2017 | Technische Universität Darmstadt

nachricht Pause to read the traffic sign: regulation of DNA transcription in bacteria
19.07.2017 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Self-disposing supramolecular materials with a tunable lifetime

19.07.2017 | Materials Sciences

Pause to read the traffic sign: regulation of DNA transcription in bacteria

19.07.2017 | Life Sciences

Manipulating Electron Spins Without Loss of Information

19.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>