Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop molecular thermometer for contactless measurement using infrared light

14.06.2017

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM) in Berlin have developed a molecular thermometer. The gemstone ruby served as the source of inspiration.


The molecular ruby in a solid (red) and dissolved (yellow) state can be used for contactless measurement of temperature.

photo/©: Sven Otto, JGU

However, the thermometer developed by the team headed by Professor Katja Heinze at the JGU Institute of Inorganic Chemistry and Analytical Chemistry is a water-soluble molecule, not an insoluble solid. Like a ruby, this molecule contains the element chromium that gives it its red color, which is why it has also been dubbed the molecular ruby.

This molecular ruby can be used to measure temperature in many different environments thanks to its solubility: it can be introduced into liquids, solids, nano-particles, and micelles. Thus, it has potential applications in the fields of the material sciences, biology, and medicine.

Measuring the temperature with the molecular ruby is very straightforward. The relevant site is irradiated with blue light, which is absorbed by the molecular ruby that then emits infrared radiation at two different wavelengths. Depending on the temperature, there is more intense emission of infrared at one of the two wavelengths. The temperature is then determined on the basis of the corresponding ratio of intensity of the two wavelengths.

"Anyone with a simple emission spectrometer can undertake this kind of measurement," explained Sven Otto, a doctoral candidate in Heinze's team. "The molecular ruby works at 100 degrees Celsius just as well as at minus 63 degrees Celsius, that is in a range relevant to everyday practice," added Otto.

The principle of optical ratiometric temperature measurement is not new. However, it was previously impossible to take measurements using only a single type of photoactive agent. To date, scientists always needed two dyes, i.e., one that produced emission dependent on temperature and another reference dye with emission independent of temperature. That made synthesis and calibration a lot more difficult.

"Our molecular ruby, on the other hand, is simply made from inexpensive raw materials and no additional reference substances are required to measure temperature," said Professor Katja Heinze. "It can be employed whenever we want to measure temperature without having to contact the object directly as with a conventional thermometer."

The research findings have been published in a special edition of Chemistry – A European Journal designed to mark the 150th anniversary of the German Chemical Society (GDCh) and featuring contributions from eminent German researchers.

The research work is being funded by the German Research Foundation (DFG) within the framework of, inter alia, the Graduate School of Excellence Materials Science in Mainz (MAINZ). The DFG recently approved a new priority program entitled "Light-controlled reactivity of metal complexes" that is coordinated by Professor Katja Heinze.

Photo:
http://www.uni-mainz.de/bilder_presse/09_anorgchemie_rubin_thermometer.jpg
The molecular ruby in a solid (red) and dissolved (yellow) state can be used for contactless measurement of temperature.
photo/©: Sven Otto, JGU

Publications:
Sven Otto et al.
Thermo-Chromium: A Contactless Optical Molecular Thermometer
Chemistry – A European Journal, 15 May 2017
DOI: 10.1002/chem.201701726
http://onlinelibrary.wiley.com/doi/10.1002/chem.201701726/abstract
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3765/homepage/2111_gdc...

Sven Otto et al.
[Cr(ddpd)2]3+: A Molecular, Water-Soluble, Highly NIR-Emissive Ruby Analogue
Angewandte Chemie International Edition, 12 August 2015
DOI: 10.1002/anie.201504894
http://onlinelibrary.wiley.com/doi/10.1002/anie.201504894/abstract

Contact and further information:
Professor Dr. Katja Heinze
Institute of Inorganic Chemistry and Analytical Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-25886
fax +49 6131 39-27277
e-mail: katja.heinze@uni-mainz.de
https://www.ak-heinze.chemie.uni-mainz.de/

Weitere Informationen:

http://www.bundesgraduiertenschule-gruppe-mainz.uni-mainz.de/ – Graduate School of Excellence Materials Science in Mainz ;
http://www.uni-mainz.de/presse/aktuell/1212_ENG_HTML.php – press release "Johannes Gutenberg University Mainz to coordinate new DFG priority program in photochemistry", 25 April 2017 ;
http://www.uni-mainz.de/presse/17824_ENG_HTML.php – press release "Katja Heinze receives research award for intelligent food packaging with freshness indicator", 5 December 2014

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The glue that keeps cells together
14.06.2017 | Julius-Maximilians-Universität Würzburg

nachricht Researchers find a surprise just beneath the surface in carbon dioxide experiment
13.06.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Graphene electrodes offer new functionalities in molecular electronic nanodevices

An international team of researchers led by the University of Bern and the National Physical Laboratory (NPL) has revealed a new way to tune the functionality of next-generation molecular electronic devices using graphene. The results could be exploited to develop smaller, higher-performance devices for use in a range of applications including molecular sensing, flexible electronics, and energy conversion and storage, as well as robust measurement setups for resistance standards.

The field of nanoscale molecular electronics aims to exploit individual molecules as the building blocks for electronic devices, to improve functionality and...

Im Focus: Quantum nanoscope

Seeing electrons surfing the waves of light on graphene

Researchers have studied how light can be used to "see" the quantum nature of an electronic material. They managed to do that by capturing light in a net of...

Im Focus: 3D Sonar Technology Made in Germany - High-resolution 3D imaging on short distances

The technology of sonar is used for many years in the field of seafloor mapping, in the fishery industry or for the search for sunken objects. By the help of new 3D sonar systems of the Fraunhofer Institute for Biomedical Engineering IBMT, these tasks can be accomplished more efficiently and precisely. The Business Unit Sonar concentrates research and development activities in the field of acoustic underwater measurements. One focus is on the high-resolution volumetric sonar imaging at distances up to 25 m.

The Fraunhofer IBMT exhibits at this year's OCEANS conference in Aberdeen from June 19-22, 2017 (Booth No. 4).

The technology of sonar - the measurement of structures under water with sound signals - is used for many years in the field of seafloor mapping, in the...

Im Focus: A stream of superfluid light

Scientists have known for centuries that light is composed of waves. The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that is still a subject of active research. The "liquid" properties of light emerge under special circumstances, when the photons that form the light wave are able to interact with each other.

Researchers from CNR NANOTEC of Lecce in Italy, in collaboration with Polytechnique Montreal in Canada have shown that for light "dressed" with electrons, an...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

The 11th Baltic Sea Science Congress opens in Rostock: 350 scientists meet to discuss their research

12.06.2017 | Event News

 
Latest News

The glue that keeps cells together

14.06.2017 | Life Sciences

Scientists develop molecular thermometer for contactless measurement using infrared light

14.06.2017 | Life Sciences

Researchers find a surprise just beneath the surface in carbon dioxide experiment

13.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>