Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create Germ Cell-Supporting Embryonic Sertoli-Like Cells From Skin Cells

10.09.2012
Using a stepwise trans-differentiation process, Whitehead Institute researchers have turned skin cells into embryonic Sertoli-like cells.

The main role of mature Sertoli cells is to provide support and nutrition to the developing sperm cells. Furthermore, Sertoli cells have been demonstrated to possess trophic properties, which have been utilized for the protection of non-testicular cellular grafts in transplantations.

However, mature Sertoli cells are mitotically inactive, and the primary immature Sertoli cells during prolonged cultures degenerate in the petri dish. Therefore, finding an alternative source of these cells independent of the donor testis cells is of paramount interest both for basic research and clinical applications.

“The idea is if you could make Sertoli cells from a skin cell, they’d be accessible for supporting the spermatogenesis process when conducting in vitro fertilization assays or protecting other cell types such as neurons when co-transplanted in vivo,” says Whitehead Institute Founding Member Rudolf Jaenisch. “Otherwise, you could get proliferating cells only from fetal testis.”

Jaenisch lab researchers have seemingly overcome the supply and lifespan challenges through trans-differentiation, the process of reprogramming a cell directly from one mature cell type to another without first taking the cell in question all the way back to the embryonic stem-cell stage. Unlike other reprogramming methods that produce induced pluripotent stem cells (iPSCs), trans-differentiation does not rely on the use of genes that can cause cancer.

As reported in Cell Stem Cell’s September issue, scientists trans-differentiated mouse skin cells into embryonic Sertoli-like cells by breaking the process into two main steps, mimicking Sertoli cells’ development in the testis. The first step in this progression transformed the skin fibroblasts from their mesenchymal state to a sheet-like epithelial state. In the second step the cells acquired the capability to attract each other to form aggregates as seen in vivo between embryonic Sertoli cells and germ cells.

Next the scientists devised a cocktail of five transcription factors that activate the epithelial cells’ embryonic Sertoli cell genetic program. The resulting cells exhibited many of the characteristics of embryonic Sertoli cells, including aggregating, forming tubular structures similar to the seminiferous tubules found in the testis, and secreting the typical Sertoli cell factors. When injected into a mouse fetal testis, the trans-differentiated cells migrated to the proper place and integrated into the endogenous tubules. Overall, the injected cells behaved like endogenous embryonic Sertoli cells, despite expressing a few genes differently.

“The injected trans-differentiated cells were closely interacting with the native germ cells, which shows that they definitely do not have any bad effect on the germ cells,” says Yossi Buganim, a postdoctoral researcher in the Jaenisch lab and first author of the Cell Stem Cell paper. “Instead, they enable those germ cells to survive.”

In fact, when the embryonic Sertoli-like cells were used to sustain other cells in a Petri dish, Buganim noted that the cells supported by the trans-differentiated cells thrived, living longer than cells sustained by actual native Sertoli cells.

Encouraged by these results in vitro, Buganim says he would like to investigate whether the embryonic Sertoli-like cells retain this enhanced supportive capacity after transplantation into the brain, where the cells could sustain ailing neurons. If so, they could have applications in the development of neuron-based therapies for neurodegenerative disorders such as ALS and Parkinson’s disease.

This work was supported by the National Institutes of Health (NIH) grants R37-CA084198 and RO1-HD045022, and the Howard Hughes Medical Institute (HHMI).

Written by Nicole Giese Rura

Rudolf Jaenisch's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.

Full Citation:

“Direct reprogramming of fibroblasts into embryonic Sertoli-like cells by defined factors”

Yosef Buganim (1), Elena Itskovich (1), Yueh-Chiang Hu (1,3), Albert W. Cheng (1,2), Kibibi Ganz (1), Sovan Sarkar (1), Dongdong Fu (1), Grant Welstead (1), David C. Page (1,2,3), and Rudolf Jaenisch (1,2).

Cell Stem Cell, September 7, 2012 print issue.

1. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
2. Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA

3. Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA

Nicole Giese Rura | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>