Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Create 3D Models of Whole Mouse Organs

Yale University engineers have for the first time created 3D models of whole intact mouse organs, a feat they accomplished using fluorescence microscopy. The team reports its findings in the May/June issue of the Journal of Biomedical Optics, in a study published online this week.

Combining an imaging technique called multiphoton microscopy with “optical clearing,” which uses a solution that renders tissue transparent, the researchers were able to scan mouse organs and create high-resolution images of the brain, small intestine, large intestine, kidney, lung and testicles. They then created 3D models of the complete organs—a feat that, until now, was only possible by slicing the organs into thin sections or destroying them in the process, a disadvantage if more information about the sample is needed after the fact.

With traditional microscopy, researchers are only able to image tissues up to depths on the order of 300 microns, or about three times the thickness of a human hair. In that process, tissue samples are cut into thin slices, stained with dyes to highlight different structures and cell types, individually imaged, then stacked back together to create 3D models. The Yale team, by contrast, was able to avoid slicing or staining the organs by relying on natural fluorescence generated from the tissue itself.

When combined with optical clearing, multiphoton microscopy—so called because it uses photons to excite naturally fluorescent cells within the tissue—can image a larger field-of-view at much greater depths and is limited only by the size of the lens used. Once the tissue is cleared using a standard solution that makes it virtually transparent to optical light, the researchers shine different wavelengths of light on it to excite the inherently fluorescent tissue. The fluorescence is displayed as different colors that highlight the different structures and tissue types (in the lung, for example, collagen is depicted as green while elastin shows up as red).

“The intrinsic fluorescence is just as effective as conventional staining techniques,” said Michael Levene, associate professor at the Yale School of Engineering & Applied Science and the team leader. “It’s like creating a virtual 3D biopsy that can be manipulated at will. And you have the added benefit that the tissue remains intact even after it’s been imaged.”

The Yale team was able to reach depths in excess of two millimeters—deep enough to image complete mouse organs. Typical tissue samples taken during patient biopsies are about this size as well, meaning the new technique could be used to create 3D models of biopsies, Levene said. This could be especially useful in tissues where the direction of a cancerous growth may make it difficult to know how to slice tissue sample, he noted.

In addition, the technology could eventually be used to trace fluorescent proteins in the mouse brain and see where different genes are expressed, or to trace where drugs travel in the body using fluorescent tagging, for example.

“Fluorescence microscopy plays such a key role throughout biology and medicine,” Leven said. “The range of applications of this technique is immense, including everything from improved evaluation of patient tissue biopsies to fundamental studies of how the brain is wired.”

Other authors of the paper include Sonia Parra, Thomas Chia and Joseph Zinter, all of Yale University.

Citation: Journal of Biomedical Optics 15(3), 036017 (May/June 2010)

PRESS CONTACT: Suzanne Taylor Muzzin 203-432-8555

Suzanne Taylor Muzzin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>