Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New scholarly paper reveals 100 new species of lichenized fungi

15.02.2011
A signature of undiscovered global diversity

In an unprecedented coming-out party, 100 newly discovered species are revealed to the world in a single scholarly paper coordinated by Field Museum scientists.

The 100 organisms are lichens, a type of fungi that form associations with algae and populate environments from arctic tundra to tropical rain forests. And the usual inattention bestowed upon new lichens is one reason for aggregating so many new ones in a single paper in the Feb. 18 issue of the journal Phytotaxa.

It is estimated that about 100,000 fungal species, including 17,500 lichens, have been discovered and named, but there may be a million more species waiting to be noticed by science. Lumbsch and his Field colleague Robert Lücking recruited 102 lichenologists from 37 countries to write the massive paper to help draw attention to huge shortfalls in our knowledge of the diverse life on Earth.

A massive collaboration such as the lichen project has some benefits over traditional biology that is done by individuals or small groups, Lumbsch said. Descriptions of the lichen species provided in the Phytotaxa article are more uniform than would likely be true if the 100 new species each appeared in a single article.

Deciding which characteristics of a lichen species to discuss has often been at the whim of individual biologists. Some fancied color while others were more intrigued by texture. As a result, some descriptions from decades ago are difficult to compare with modern information.

"Molecular data show that some characteristics biologists once regarded as minor really carry more importance," Lumbsch said.

The lichen collaboration is intended to demonstrate to biologists that even though they join with a large group in presenting their findings, they still receive full credit and don't lose authority over their discovery, he said.

Another benefit from the lichen collaboration is that besides being in the scholarly paper, every newly found species got its own Web site, part of the Encyclopedia of Life project fostered by the Field Museum and several other institutions. That project seeks to build a public Web source for information on all known species.

"We wanted to show these scientists how easy it is to contribute their information to the Encyclopedia of Life and how useful that is," said Lumbsch.

While biology traditionally has been more solitary, many in the field acquired an appetite for larger collaborations with the project to map the human genome more than a decade ago. Since then, such collaborations have become more common, especially in projects that seek to coordinate understanding of life on the planet, Lumbsch said.

Recruiting biologists to join the lichen collaboration wasn't difficult, he said, but "sometimes getting them to pay attention to deadlines wasn't so easy."

The project, which took about a year to complete, would have been impossible without the Internet and e-mail, Lumbsch said, but even with e-mail communications were very time-consuming.

"I would like to do it again," he said. "But first I will talk to some information specialists to learn how we might facilitate communications so my e-mail inbox doesn't keep overflowing!"

Nancy O'Shea | EurekAlert!
Further information:
http://www.fieldmuseum.org

Further reports about: Encyclopedia Encyclopedia of Life Forum Life Science Phytotaxa

More articles from Life Sciences:

nachricht Algae: The final frontier
22.06.2017 | Carnegie Institution for Science

nachricht Flipping the switch to stop tumor development
22.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>