Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sandia, Others Funded to Sequence Microbial Genes for Potential Biofuels Use

Sandia researchers and others at the University of New Mexico (UNM), the Joint BioEnergy Institute (JBEI), Novozymes and North Carolina State University’s Center for Integrated Fungal Research (NCSU-CIFR) have received a DNA sequencing award from the Department of Energy Joint Genome Institute (JGI) to study microbial genes in arid grasslands. The research combines interests in fundamental microbial ecology with DOE goals to exploit microbes in the production of biofuels.

“This award positions a very talented team to collaboratively apply DOE’s unique facilities in genomics and systems biology to the important challenge of sustainable bioenergy production,” said Grant Heffelfinger, biofuels program lead for Sandia.

“We normally think of biofuels-relevant ecosystems as those where substantial amounts of biomass is produced and broken down, but this is an excellent example of the relevance of biodiversity across ecosystems — both for the advancement of systems biology as well as biofuels production.”

Microorganisms in aridland ecosystems have evolved high-efficiency recycling systems to cope with severe nutrient scarcity, extreme temperatures and low water availability. Genes underlying these adaptations offer great potential in industrial-scale processes designed to convert plant material cheaply and efficiently into biofuels.

The project’s sequencing effort will focus on microorganisms associated with the roots of a common grass species, blue grama, and will interface with ongoing environmental change experiments at the UNM’s Sevilleta Long Term Ecological Research site in central New Mexico.

“This award will enable us to better understand the metabolic potential of microbial communities native to extreme environments,” said Don Natvig, professor of biology at UNM. “This understanding can in turn be applied to real-world problems, such as biofuels production inefficiencies and greenhouse gas management technologies.”

Biofuels research and environmental change studies are united by the urgent need to develop sustainable energy sources, and to understand and mitigate the environmental effects of spiraling greenhouse gas emissions. In terms of renewable energy, the study will drive the commercial development of new products useful in the breakdown of lignocellulosic biomass, the starting material for production of biofuels.

From an environmental sciences perspective, the award will enable researchers to study and monitor the effects of altered patterns of fire, precipitation, increasing temperatures and atmospheric pollution on ecosystem structure and function.

The scientific team includes Amy Powell and Bryce Ricken from Sandia; Don Natvig, Scott Collins, Robert Sinsabaugh, Andrea Porras-Alfaro and Diego Martinez from the Department of Biology at UNM; Blake Simmons of Sandia and JBEI; Ralph Dean of NCSU-CIFR; and Randy Berka of Novozymes.

The total sequencing resources allocated to the project by DOE will be the equivalent of that required to analyze several microbial genomes or a significant fraction of the human genome, which contains approximately three billion base pairs of DNA.

Established in 2005, the JGI’s Community Sequencing Program (CSP) provides the scientific community at large with free access to high-throughput sequencing at DOE JGI for projects of relevance to DOE missions. Sequencing projects are chosen based on scientific merit — judged through independent peer review — and relevance to issues in bioenergy, global carbon cycling and biogeochemistry. For more information, see:

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Mike Janes | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>