Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researchers discover how HIV resists AZT

20.09.2010
Virus hijacks a common molecule to do the job

Rutgers researchers have discovered how HIV-1, the virus that causes AIDS, resists AZT, a drug widely used to treat AIDS.

The scientists, who report their findings in Nature Structural & Molecular Biology, believe their discovery helps researchers understand how important anti-AIDS treatments can fail and could help AIDS researchers develop more effective treatment for the disease.

"What we've found is the detailed way in which the mutations act to promote the resistance," said author Eddy Arnold, Board of Governors Professor of Chemistry and Chemical Biology, and a resident faculty member of the Center for Advanced Biotechnology and Medicine. "Instead of blocking the actions of AZT, the virus actually removes it, and it does so by using ATP, one of the most common cellular molecules. This is an outstanding example of how sneaky HIV can be in thwarting the efficacy of therapeutic drugs."

AZT was once the only treatment for AIDS, and it remains an important treatment, particularly in preventing the transmission of the virus from infected mothers to their unborn children.

Researchers knew almost from the beginning that the virus developed resistance to AZT, and that this resistance had to do with mutations, but the way the mutations worked to resist the drug was mysterious.

AZT works by inhibiting an enzyme, reverse transcriptase, which HIV needs to produce DNA from RNA, and thus replicate itself. About 10 years ago, biochemical studies in several laboratories established that AZT-resistant HIV-1 reverse transcriptase uses adenosine triphosphate, or ATP, which moves energy around inside the cell, to remove the AZT. Arnold and his co-authors have used X-ray crystallography to describe in atomic detail how the AZT-resistance mutations allow reverse transcriptase to recruit ATP to remove the AZT.

Arnold's co-authors are Roger Jones, professor of chemistry and chemical biology at Rutgers; Xiongying Tu, Kalyan Das, Qianwei Han, Arthur D. Clark Jr., Yulia Frenkel and Stefan G. Serafianos, of the Center for Advanced Biotechnology and Medicine; and Stephen Hughes and Paul Boyer of the National Cancer Institute in Frederick, Md. The Center for Advanced Biotechnology and Medicine is a joint center of Rutgers University and the University of Medicine and Dentistry of New Jersey. The study was funded by the National Institutes of Health, by grants from both the National Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of General Medical Sciences (NIGMS), both part of the National Institutes of Health. Arnold has received two consecutive MERIT (Merit to Extend Research in Time) Awards from NIAID, an honor bestowed on less than five percent of NIH grant recipients.

Ken Branson | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>