Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researchers discover how HIV resists AZT

20.09.2010
Virus hijacks a common molecule to do the job

Rutgers researchers have discovered how HIV-1, the virus that causes AIDS, resists AZT, a drug widely used to treat AIDS.

The scientists, who report their findings in Nature Structural & Molecular Biology, believe their discovery helps researchers understand how important anti-AIDS treatments can fail and could help AIDS researchers develop more effective treatment for the disease.

"What we've found is the detailed way in which the mutations act to promote the resistance," said author Eddy Arnold, Board of Governors Professor of Chemistry and Chemical Biology, and a resident faculty member of the Center for Advanced Biotechnology and Medicine. "Instead of blocking the actions of AZT, the virus actually removes it, and it does so by using ATP, one of the most common cellular molecules. This is an outstanding example of how sneaky HIV can be in thwarting the efficacy of therapeutic drugs."

AZT was once the only treatment for AIDS, and it remains an important treatment, particularly in preventing the transmission of the virus from infected mothers to their unborn children.

Researchers knew almost from the beginning that the virus developed resistance to AZT, and that this resistance had to do with mutations, but the way the mutations worked to resist the drug was mysterious.

AZT works by inhibiting an enzyme, reverse transcriptase, which HIV needs to produce DNA from RNA, and thus replicate itself. About 10 years ago, biochemical studies in several laboratories established that AZT-resistant HIV-1 reverse transcriptase uses adenosine triphosphate, or ATP, which moves energy around inside the cell, to remove the AZT. Arnold and his co-authors have used X-ray crystallography to describe in atomic detail how the AZT-resistance mutations allow reverse transcriptase to recruit ATP to remove the AZT.

Arnold's co-authors are Roger Jones, professor of chemistry and chemical biology at Rutgers; Xiongying Tu, Kalyan Das, Qianwei Han, Arthur D. Clark Jr., Yulia Frenkel and Stefan G. Serafianos, of the Center for Advanced Biotechnology and Medicine; and Stephen Hughes and Paul Boyer of the National Cancer Institute in Frederick, Md. The Center for Advanced Biotechnology and Medicine is a joint center of Rutgers University and the University of Medicine and Dentistry of New Jersey. The study was funded by the National Institutes of Health, by grants from both the National Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of General Medical Sciences (NIGMS), both part of the National Institutes of Health. Arnold has received two consecutive MERIT (Merit to Extend Research in Time) Awards from NIAID, an honor bestowed on less than five percent of NIH grant recipients.

Ken Branson | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>