Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rocket Science Leads to Discovery About Whale Hearing

26.11.2009
Rocket science is opening new doors to understanding how sounds associated with Navy sonar might affect the hearing of a marine mammal – or if they hear it at all.

The same type of large industrial sized X-ray scanners that NASA uses to detect flaws in the space shuttle’s behemoth solid fuel rockets is now allowing scientists to peek inside the giant head of a whale.

The scans are providing detailed three-dimensional replicas of a whale’s hearing anatomy using a breakthrough method developed by Dr. Ted Cranford, a marine biologist sponsored by the Office of Naval Research (ONR) and the Chief of Naval Operations Environmental Readiness Division (N45).

Using a simulated model of a male beaked whale’s head, Cranford’s team at San Diego State University and the University of California at San Diego (UCSD) has unveiled data that suggests mid-frequency active sonar sounds are largely filtered, or "muffled," before reaching the animal’s ears. The findings also suggest that higher frequencies used by whales to hunt prey are heard at amplified levels without any dampening.

"Even though these findings are promising, our next step is to reproduce the study with a similar species for which hearing tests are available, such as the bottlenose dolphin," Cranford said. "If we obtain like results, it will help to validate this new discovery."

The innovative approach integrates advanced computing, outsized X-ray CT scanners, and modern computational methods (developed by Dr. Petr Krysl at UCSD) to generate the reproductions in minute detail. The simulation, also referred to as a "finite element model" or FEM, accurately describes the interactions of sound with the whale's hearing anatomy. In addition, it forecasts and analyzes incoming sound received at the ear and provides a description of how different characteristics combine to create movement throughout the ear.

"The simulation technology is powerful because it provides a means to look at a broad range of species, from whales to fish, for which we may not otherwise be able to study hearing," said ONR program manager Dr. Michael Weise. "Virtual experiments can also provide potential for evaluating and directing mitigation efforts."

In October, Cranford earned top honors for a presentation titled "Knocking on the Inner Ear in Cuvier's Beaked Whale" at the 18th Biennial Biology of Marine Mammals Conference in Quebec, Canada. The development is gaining widespread attention throughout the scientific community as a credible and highly useful tool.

In 2009, ONR and N45 contributed $20 million for research on marine mammals and the effects of underwater sound. ONR provides the science and technology necessary to maintain the Navy and Marine Corps´ technological advantage. Through its affiliates, ONR is a leader in science and technology with engagement in 50 states, 70 countries, 1,035 institutions of higher learning, and 914 industry partners. ONR employs approximately 1,400 people, comprising uniformed, civilian and contract personnel. N45 works with the fleets, systems commands, and government regulatory agencies to develop effective environmental policy and ensure Sailors and Marines can train and operate in compliance with environmental laws.

Point of Contact:
Office of Naval Research
Corporate Communications Office
Phone: 703-696-5031
Fax: 703-696-5940
E-mail: onrcsc@onr.navy.mil

Peter Vietti | EurekAlert!
Further information:
http://www.navy.mil

Further reports about: CT scanner Marine science N45 Naval Navy ONR Science TV UCSD Whale X-ray microscopy computational method

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>