Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rocket Science Leads to Discovery About Whale Hearing

26.11.2009
Rocket science is opening new doors to understanding how sounds associated with Navy sonar might affect the hearing of a marine mammal – or if they hear it at all.

The same type of large industrial sized X-ray scanners that NASA uses to detect flaws in the space shuttle’s behemoth solid fuel rockets is now allowing scientists to peek inside the giant head of a whale.

The scans are providing detailed three-dimensional replicas of a whale’s hearing anatomy using a breakthrough method developed by Dr. Ted Cranford, a marine biologist sponsored by the Office of Naval Research (ONR) and the Chief of Naval Operations Environmental Readiness Division (N45).

Using a simulated model of a male beaked whale’s head, Cranford’s team at San Diego State University and the University of California at San Diego (UCSD) has unveiled data that suggests mid-frequency active sonar sounds are largely filtered, or "muffled," before reaching the animal’s ears. The findings also suggest that higher frequencies used by whales to hunt prey are heard at amplified levels without any dampening.

"Even though these findings are promising, our next step is to reproduce the study with a similar species for which hearing tests are available, such as the bottlenose dolphin," Cranford said. "If we obtain like results, it will help to validate this new discovery."

The innovative approach integrates advanced computing, outsized X-ray CT scanners, and modern computational methods (developed by Dr. Petr Krysl at UCSD) to generate the reproductions in minute detail. The simulation, also referred to as a "finite element model" or FEM, accurately describes the interactions of sound with the whale's hearing anatomy. In addition, it forecasts and analyzes incoming sound received at the ear and provides a description of how different characteristics combine to create movement throughout the ear.

"The simulation technology is powerful because it provides a means to look at a broad range of species, from whales to fish, for which we may not otherwise be able to study hearing," said ONR program manager Dr. Michael Weise. "Virtual experiments can also provide potential for evaluating and directing mitigation efforts."

In October, Cranford earned top honors for a presentation titled "Knocking on the Inner Ear in Cuvier's Beaked Whale" at the 18th Biennial Biology of Marine Mammals Conference in Quebec, Canada. The development is gaining widespread attention throughout the scientific community as a credible and highly useful tool.

In 2009, ONR and N45 contributed $20 million for research on marine mammals and the effects of underwater sound. ONR provides the science and technology necessary to maintain the Navy and Marine Corps´ technological advantage. Through its affiliates, ONR is a leader in science and technology with engagement in 50 states, 70 countries, 1,035 institutions of higher learning, and 914 industry partners. ONR employs approximately 1,400 people, comprising uniformed, civilian and contract personnel. N45 works with the fleets, systems commands, and government regulatory agencies to develop effective environmental policy and ensure Sailors and Marines can train and operate in compliance with environmental laws.

Point of Contact:
Office of Naval Research
Corporate Communications Office
Phone: 703-696-5031
Fax: 703-696-5940
E-mail: onrcsc@onr.navy.mil

Peter Vietti | EurekAlert!
Further information:
http://www.navy.mil

Further reports about: CT scanner Marine science N45 Naval Navy ONR Science TV UCSD Whale X-ray microscopy computational method

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>